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Abstract

This report presents (1) the basic ideas of bootstrapping when applied in re-
gression problems, as described in [2, 3], and (2) how to implement these ideas
using Arc, the computer package that accompanies [1]. This add-on works for
linear, generalized linear, nonlinear and generalized nonlinear models.

1 Introduction

This report provides documentation for using the bootstrap add-on for most regression
problems in Arc, [1], and an introduction to bootstrap methods in linear regression
analyses [2, 3]. We discuss first in Section 3 how to use the add-on for the bootstrap,
illustrating the use in several examples. Following this section, we discuss some of the
details of the bootstrap in Section 5. In Section 6 we discuss the use of the bootstrap in
comparing models. A few generalizations are presented in Section 7.

2 Getting the add-on

The web site http://www.stat.umn.edu/arc includes the most recent version of Arc. The
bootstrap add-on is available from the Add-ons page on this same web site in the file
boot.lsp.

To use boot.lsp, download it from the Internet, and put it in the folder Extras in
your Arc directory. Further directions are given at the top of the add-ons page on the
web site.
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3 Using the bootstrap

3.1 A simple example of the bootstrap

Suppose we know that we are sampling from a particular distribution
�

, for example a
standard normal distribution, ��� N �����
	�� . Suppose further that we are taking a sample
of size 
 . What is the standard error of the sample median?

We can obtain an approximate answer this problem by computer simulation, set up
as follows. Let

�
be the cumulative distribution function of the N ������	�� distribution:

1. Obtain a random sample ���� ���
������������ from
�

.

2. Compute and save the median of the sample in step 1.

3. Repeat steps 1 and 2 a large number, say � , times. The larger the value of � , the
more precise the ultimate answer.

4. Estimate the standard error of the median by the standard deviation of the medi-
ans estimated in step 2.

To use this algorithm, we need to be able to simulate observations from the distribution�
, and this is possible for most choices of

�
. For standard distributions like the nor-

mal, exponential, and so on, functions already exist for this, and for others there is an
extensive literature on simulating values from a distribution (e.g., [4]) . We could also
get the standard error of any function of the sample data values by replacing the median
with whatever other function is of interest. This is an example of a parametric boot-
strap, in which the computer is used to sample repeatedly from a known parametric
distribution.

Suppose next that rather than knowing
�

exactly, we only have a random sample
� � �����
����� � from

�
, and once again we want to estimate the standard deviation of the

median of the sample of size 
 . In addition, we may want to make a confidence state-
ment concerning the population median, or perhaps perform a test. While we no longer
assume that

�
is known, we do have an estimate of

�
, namely the sample cumulative

distribution function �� based on the available sample. We can now carry out the above
algorithm, but sample from �� , not from

�
:

1. Obtain a random sample ���� ���
������������ from �� by sampling with replacement from
the observed values � � �
���
����� � .

2. Compute and save the median of the sample in step 1.

3. Repeat steps 1 and 2 a large number, say � , times. The larger the value of � , the
more precise the ultimate answer.

4. Estimate the standard error of the median by the standard deviation of the me-
dians estimated in step 2. We can further use the sample distribution of the �
bootstrap estimates of the median to perform tests or get confidence intervals.
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For example, if ��� ����� , we can order the bootstraps from largest to smallest, and
the interval between the 25th smallest value and the the 975th largest value provides an
estimated 95% confidence interval for the median. A test at the 5% level concerning
the population median can be rejected if the hypothesized value of the median does not
fall in the confidence interval. In particular applications of the bootstrap, improvements
over these simple percentile-based methods are available, but we do not generally pur-
sue them here.

This algorithm is an example of a case bootstrap, in which we do the resampling
by taking samples from the sample cumulative distribution of the observed cases. In
regression we will have another type of bootstrap based on resampling residuals; see
Section 5.1.

The remainder of this section is not required for the rest of this report.
The Arc add-on for the bootstrap includes two very simple functions for the above

two simulations. For example,

> (def ans1 (parametric-bootstrap 20))
> (mean ans1)
-0.00591493
> (standard-deviation ans1)
0.274598

The first line computed ��� ����� bootstrap samples from a standard normal distribu-
tion, computing the median of each sample. The mean of the � samples is � ��� � ��� � ,
not far from the true value of zero. The standard deviation estimates the standard error
of the median, which is ��� ��	
� . If you redo this example, you will of course get slightly
different answers because this is a simulation, not an exact computation. The command

> (def ans2 (parametric-bootstrap 30
:dist #’(lambda (n) (poisson-rand n 3))
:statistic #’(lambda(x) (quantile x .25))
:B 499))

> (mean ans2)
1.86072
> (standard-deviation ans2)
0.419337

returns 499 bootstraps, each from the Poisson distribution with mean ����
 , and on
each bootstrap the 25-th percentile will be computed. The average value estimates
the expected 25-th percentile, about 1.86. The standard error of an estimated 25-th
percentile is 0.419.

The function case-bootstrap is similar to the last function, except it does a case
bootstrap. For example,

> (def data (poisson-rand 30 3))
> (def ans3 (case-bootstrap data

:statistic #’(lambda(x) (quantile x .25))
:B 499))

> (mean ans3)
2.24449
> (standard-deviation ans3)
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0.388521
> (quantile ans3 ’(.025 .975))
(2 3)

first computes a fixed sample of data with 30 Poisson random numbers, and then does
a case bootstrap based on resampling from �� determined by these 30 numbers. The
estimated standard deviation of the 25-th percentile is .388, and a 95% confidence
interval for the 25-th percentile based on the observed sample is from 2 to 3 (recall the
Poisson is a discrete distribution).

3.2 The bootstrap for regression

The use of the bootstrap add-on is best illustrated by example. We consider the trans-
actions data described in Section 7.3.3 of [1]. The fitted linear regression is given in
part by:

Data set = Transactions, Name of Fit = L1
Normal Regression
Kernel mean function = Identity
Response = Time
Terms = (T1 T2)
Coefficient Estimates
Label Estimate Std. Error t-value p-value
Constant 144.369 170.544 0.847 0.3980
T1 5.46206 0.433268 12.607 0.0000
T2 2.03455 0.0943368 21.567 0.0000

R Squared: 0.909053
Sigma hat: 1142.56
Number of cases: 261
Degrees of freedom: 258

In this output, the coefficients are the least squares estimates, and the standard errors
are computed assuming that the assumptions of the linear model (correct mean func-
tion, constant variance) hold. Confidence statements and tests generally rely of the
asymptotic normality of the estimated coefficients. However, the assumption of con-
stant variance may not hold in these data, and an alternative method of inference might
be useful.

To perform the bootstrap, select “Bootstrap” from the model’s menu. This will give
the dialog shown in Figure 1. In this dialog, select the number of bootstraps you would
like to perform. The default of � � ��� � is appropriate in easy-to-compute problems
like linear regression, but may be too large for routine use in problems like nonlinear
regression that require iterative computations. Some guidance on selecting � for other
regression models is given in Section 3.3. You can also select the bootstrap method,
either the parametric bootstrap, Section 5.3, case bootstrap, Section 5.2, or the residual
bootstrap described in Section 5.1. For now, we select the case bootstrap method that
was described in the last section, and press the OK button.

The computer program then computes � bootstrap samples, and saves the resulting
coefficient estimates from each of the samples. When the computation is completed,
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Figure 1: The bootstrap dialog. This dialog is the same for all regression models.

a probability plot is displayed, like the one in Figure 2. This figure displays all the
bootstrap samples for one of the coefficients; for linear models with an intercept, the
bootstrap sample intercepts are displayed. If normal theory is applied to these data,
these would be like a sample from a

�
distribution with 
 ��
 � � ��� df, and so this

distribution is used in the probability plot. A straight plot suggests that the usual normal
theory will be appropriate for inference about this parameter. Probability plots for the
other coefficients are obtained by pressing the mouse in the slide-bar that initially says
Intercept;” all three appear approximately straight.

Additional bootstrap options are contained in the Bootstrap pop up menu. Here are
the items available in this menu:

Display summaries Gives a printed summary of common statistics based on the boot-
strap. The output for the transactions data is shown in Table 1. In this table, the
column marked “Observed estimate” is the original estimate based on the orig-
inal data. The “Bootstrap bias” is the difference between the observed estimate
and the mean of the � bootstrap samples. The “Model SE” is the nominal stan-
dard error computed from the model that was used to fit the data. The “Bootstrap
SE” is the standard error based on the bootstrap. In this data set, the bootstrap
standard errors are about 50% larger than the model-based standard errors, sug-
gesting that the model is underestimating variability. The last two columns give
� -values for the test that the coefficient is equal to zero, after adjusting for the
others, first based on standard theory, and then based on the bootstrap.

Beneath this table is a summary of confidence intervals for the coefficient esti-
mates. The column marked “Normal theory” is computed from the usual method
of “estimate � multiplier � standard error.” The percentile bootstrap uses per-
centiles of the sample distribution of the bootstrap samples to estimate the ends
of the confidence intervals. The BCa method is described in [[3]] . We see from
the output that normal theory probably has intervals that are too short in this
example.

Show Histograms Display the bootstrap estimates in histograms.

Save as a dataset This will create a new Arc dataset whose variables are the bootstrap
replicates. Using this dataset, you can compute other quantities that were not
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Table 1: Bootstrap summary for the transactions data.

Data set = Transactions, Name of Fit = L1
Normal Regression
Kernel mean function = Identity
Response = Time
Terms = (T1 T2)
Bootstrap based on resampling cases
Number of replications = 999

Observed Bootstrap Model Bootstrap Model Boot
Estimate Bias SE SE pvalue pvalue

Intercept 144.37 -15.642 170.54 193.10 0.3980 0.4104
T1 5.4621 -5.4692E-2 0.43327 0.64311 0.0000 0.0000
T2 2.0345 1.3128E-2 9.4337E-2 0.14662 0.0000 0.0000
Coefficient confidence intervals, using three methods
Level Normal Theory Percentile Bootstrap BCa Bootstrap
Coefficient: Intercept
0.9 (-137.162 425.9) (-153.363 475.496) (-194.484 438.335)

0.95 (-191.466 480.205) (-206.884 544.436) (-236.417 492.953)
0.99 (-298.196 586.935) (-337.296 667.591) (-396.469 594.105)
Coefficient: T1
0.9 (4.74683 6.17729) (4.46815 6.51093) (4.19983 6.33105)

0.95 (4.60886 6.31525) (4.26133 6.79872) (3.89807 6.4477)
0.99 (4.33772 6.5864) (3.83344 7.0646) (3.51959 6.85134)
Coefficient: T2
0.9 (1.87882 2.19028) (1.77011 2.26107) (1.82777 2.32249)

0.95 (1.84878 2.22032) (1.73101 2.31182) (1.78805 2.38479)
0.99 (1.78974 2.27935) (1.66394 2.40912) (1.71666 2.44001)
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Figure 2: The bootstrap control plot. This is a probability plot of the bootstrap samples
for the intercept for the transactions data. Probability plots for the other coefficients
are obtained using the slider at the bottom left of the plot. Other bootstrap summaries
are obtained using the Bootstrap pop-up menu.

included in the basic output. For example, if interested in a confidence interval
for the ratio of the coefficient for C � to the coefficient for CED , one could: (1)
create a new data set; (2) use the “Add a variate” item to compute the ratio; (3)
use the “Table data” item to get the statistics of interest, such as the 0.25 and
.975 quantiles that give the ends of a confidence interval.

3.3 Bootstrap in other regression models

The bootstrap add-on works the same way for linear models, generalized linear models,
nonlinear models and generalized nonlinear models. Here are some special considera-
tions for each of these types.

3.3.1 Linear models

The implementation of the bootstrap used here should work well for all linear models.
In addition, see Section 6.2 for additional methods for bootstrapping

�
-tests to com-

pare models. The residual bootstrap and possibly the case bootstrap are likely to be the
most useful here.

In some instances, when using the case bootstrap, some of the bootstrap samples
may have fewer linearly independent terms than the original model. This may cause
the bootstrap procedure to fail. Should this happen, try using the residual bootstrap.
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3.3.2 Generalized linear models

The residual bootstrap method is only available for normal generalized linear models.
Computations here are iterative, so setting � to be large can result in very lengthy
computations. The case bootstrap is the preferred method, but it, too, may fail if the
number of linearly independent terms in the bootstrap data is different from the original
data.

3.3.3 Nonlinear models and generalized nonlinear models

Nonlinear models are also iterative, and furthermore starting values strongly influence
whether or not estimates are actually found. The bootstrap method uses starting val-
ues from the original data, and counts the number of bootstrap samples for which the
algorithm fails to converge. If the algorithm fails 25 times in a row on 25 different
bootstrap samples, the program gives up. Case bootstraps are more likely to fail than
residual bootstraps. The residual bootstrap is not available with non-normal general-
ized nonlinear models.

4 Linear regression

In this section, we review linear regression as a prelude to presenting some of the details
for the bootstrap. Following the notation and development in [1], regression concerns
a response � and � predictors, � � ��� � �����
������� � � . The general goal in regression is
to study how the conditional distribution of � � � changes as the value of � changes,
often concentrating on the mean function, E ��� � � � . In many regression problems, the
response � � � is written

� � � � E � � � � �	��

�
� �
where 
 is called the statistical error and the weights ��� � are known, positive num-
bers. Another feature of the conditional distribution of � � � that is often studied in
regression is the variance function var ��� � � � � var ��
 ����� .

Let � be a � � 	 vector of terms derived from � . Typically, � will consist of a
constant 1 for an intercept, and ��� � 	�� additional functions of � , like polynomials or
other transformations. The linear regression model has mean function

E � � � � � � E ��� � � � ��������� ��� � ��� �!�"�
#�$ �%� #&$ � �(' � � (1)

where ' � � �)��� �
���
���*�
#�$ � � is a � � 	 vector of mean function coefficients, and variance
function

var ��� � � � �,+ D �-� (2)

These assumed forms of the mean and variance functions imply that E ��
 � � � and
var �.
 � �/+ D . This reflects an alternative way of specifying the general form of the
linear regression model—the linear mean function (1) together with the assumption
that the distribution of the errors is independent of � .

For a full parametric analysis, the distribution of � � � , or alternatively of 
 , must
be specified. For normally distributed errors, the least squares theory of regression
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estimation and inference provides straightforward, exact methods for analysis. But for
non-normal errors, these methods have the potential to be inaccurate or misleading.
Resampling methods such as the bootstrap provide an alternative methodology, with
the potential to both

� reinforce conclusions arrived at using normal theory, and

� to provide estimation and inference techniques in situations where normal theory
does not seem to be justified.

For other regression problems, such as generalized linear models, nonlinear models
and generalized nonlinear models, the development is similar to that for linear models.
In those problems bootstrap methods can be even more useful because usual parametric
inferences can be questionable as they may depend more heavily on either asymptotics
or assumptions.

5 Types of bootstraps

The bootstrap is a data-based simulation method for statistical inference. The basic
idea is as follows. To make an inference about a population quantity, say

�
, we have

a data-based estimate, ��
. We would like to get some idea of the distribution of the

estimate, without having to make assumptions about the data, such as assuming that
the data come from a multivariate normal distribution. One way to do this is to re-
sample with replacement from the data to get a bootstrap sample of the same size as
the original sample, and made up of cases from the original sample, some appearing
once, some twice, and so on, and some not appearing at all. Repeat this process to get
a large number, � , bootstrap samples, and calculate ��

for each sample. For notation,
denote bootstrap estimates with a star, and hence ��

for a bootstrap sample is denoted
�� � . These � �� � ’s contain information that can be used to make inferences from the
data; essentially, �� � is to ��

as ��
is to

�
. Some of the types of inference possible in the

linear regression context will be explored in more detail in Section 6. In the next three
subsections, we present different ways of doing the resampling.

5.1 Resampling residuals

The “resampling residuals” paradigm takes the point of view that responses, � � � , are
sampled from a univariate distribution

� � � � � � whose mean and variance are given
by the mean function (1) and variance function (2). Trying to estimate

� � � � � � using
bootstrap methods doesn’t work directly, because of the conditioning on � . But, since �
is assumed to be fixed under this paradigm, estimate the distribution of 
 by resampling
residuals, defined to be the weighted differences between the observed values of the
response and the fitted values under the linear regression model

�� � � � � � � �E ��� � � � � �,� � ��� � �� � (3)

The linear regression model is implicit under this paradigm—using bootstrap methods
in regression by resampling residuals essentially assumes that the linear regression
model holds.
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In the bootstrap add-on, we use a refinement of the residuals that has good proper-
ties. Since the distribution of 
 is assumed to be independent of � , we really want to
be resampling something whose distribution does not depend on � . Assuming 
 cases,
the � -th linear model regression residual as defined in (3) has variance var � ����

� � � � �
+ D ��	 ��� � � , where � � is the � -th leverage, � � 	 �
���
����
 . The leverage depends on � � ,
and so if any leverages are particularly high, resampling the residuals will not do a
good job of estimating the distribution of 
 . Since the leverages are known, consider
the modified residuals

���� � � � � ��� � � �� � ��
� 	 ��� � � (4)

which have constant variance. The modified residuals differ from the Studentized resid-
uals described in Section 15.3.1 of [1] only by division by an estimate of + D , and thus
the two are equivalent.

One final adjustment is needed since 
 is assumed to have mean 0. Thus, we sample
from the mean-corrected modified residuals to get bootstrap errors


 �� randomly sampled with replacement from ��	� ��
�

where 
� is the sample average of the modified residuals (4).
Assume that the linear regression model holds, and fix the bootstrap predictor val-

ues at the original sample � � values. Also fix bootstrap weights at the original sample
� � values. The usual weighted least squares estimate of ' from the original sample,
say �' , are used to derive bootstrap responses

� �� � �'
�
� � ��
 �� � � � �

Next, compute the usual weighted least squares estimate of ' from this bootstrap
sample, say �' � , and repeat � times.

We use this same sampling plan in normal nonlinear models as well, with approxi-
mate leverages defined as appropriate for the nonlinear model.

5.2 Resampling cases

The “resampling cases” paradigm takes the point of view that cases, ��� �*� � , are sam-
pled from a multivariate distribution

� ��� �*� � . Estimate the distribution of ��� �*� � by
resampling cases, defined to be the multivariate vectors � � �*� � . The linear regression
model lies outside this paradigm—using bootstrap methods in regression by resam-
pling cases essentially makes no assumption about whether or not the linear regression
model holds. The linear regression model only arises in this setting by going on to
specify the conditional mean and variance of � � � as the mean function (1) and variance
function (2). Then, it is also necessary to include each case’s weight when resampling,
and the cases to be resampled can now be written ��� ��� �*� � .

To estimate the distribution of � � �*� � by resampling cases sample from the integers
running from 1 to 
 to get bootstrap indices


 �� randomly sampled with replacement from � 	 � � �
��������
 �
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Assuming that � � �*� � are sampled from a multivariate distribution
� � � ��� � , derive boot-

strap cases
� � �� ��� �� �*� �� � � � ������ �*������ �������� �

Compute the usual weighted least squares estimate of ' from this bootstrap sample,
and repeat � times.

With the additional step from a joint distribution to conditional distributions, this
resampling method can be used in all the regression models described here. For nonlin-
ear and generalized nonlinear models, however, resampling cases can cause problems
because the estimates of parameters can be very different when the design changes.
This may lead to convergence problems when trying to find the estimates for the boot-
strap samples.

5.3 Parametric bootstrap

In a linear regression problem, suppose that �E ��� � � � are the fitted values and that �+ D is
the estimated residual variance. Bootstrap samples are obtained by computing � � �
�E � � � � � � � � , where � � is a random sample from the normal N ����� �+ D � distribution. This
is called a parametric bootstrap because it makes use of the parametric form of the
distribution of the residuals.

An advantage of the parametric bootstrap is that it can be applied in virtually any
regression problem. For example, suppose we have a logistic regression problem. Sup-
pose that �� gives the estimated probabilities of success for each of the 
 cases in the
data, and that the vector � gives the number of trials for each of the � cases. We can
generate bootstrap samples by obtaining � � as binomial random numbers with trials
given by � and probabilities of success given by �� .

A prime disadvantage of this method is that it relies on a parametric assumption
that need not hold, and therefore it is likely to be less accurate than other bootstrap
methods in some problems.

5.4 Numerical problems

It is possible for case resampling to run into computational problems. In particular,
given the numerical tolerances computers must work within, it is possible (albeit un-
likely) for a bootstrap sample to produce a model with lower rank than the model for
the original sample, particularly when doing case resampling. The Arc bootstrap code
does not currently check for this, and if it does happen, an unhelpful error message is
returned and the bootstrap routine terminates. Future work will hopefully address this
issue so that any lower rank bootstrap samples are ignored, allowing the routine to be
completed.

6 Hypothesis tests for regression coefficients

Consider a hypothesis test with null hypothesis, NH, and test statistic, C . The � -value
for this hypothesis test can be defined as the probability that a random variable with the
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same distribution as that of C when NH is true is as large or larger (in absolute value)
than the observed value of C .

This suggests the following method for estimating a � -value using bootstrap ideas:
figure out a null distribution for the data under NH and generate � bootstrap values
of C under this distribution. The � -value estimate is then the proportion of times that
the bootstrap C � ’s are as large or larger (in absolute value) than the (original sample)
observed value of C . To apply this in practice however, we need to choose both a
suitable C and a null distribution for the data under NH.

An alternative strategy uses a pivot statistic for C . Pivot statistics have distribu-
tions that do not depend on coefficient values, so there is no need to figure out a null
distribution for the data under NH—we can just carry out the simulation under the al-
ternative hypothesis, AH. Again, the � -value estimate is the proportion of times that
the bootstrap C � ’s are as large or larger (in absolute value) than the (original sample)
observed value of C .

6.1 Testing a single regression coefficient

The usual normal theory method for testing a single regression coefficient is a
�
-test of

the Studentized coefficient estimate.
As an alternative, one way to test a single regression coefficient using the pivot

method outlined above is to use the pivot

C � ��
# � �
#
se � �� # �

to test the � -th coefficient ( � � �����
����� � � 	 ). Using the “ ���� is to �� as �� is to � ” idea
mentioned in Section 5,

C � � ����# � �� #
se � �� �# �

The (two-tailed) � -value estimate for � # � � is then the proportion of times that the
bootstrap C � ’s are as large or larger (in absolute value) than the (original sample) ob-
served value of C ,

C � � ��
#
se � �� # �

These � -values are presented in the bootstrap output. Similar methodology is used for
generalized linear, nonlinear and generalized nonlinear models.

6.2 Testing a subset of mean function coefficients

This uses special code that is available only for linear models. Consider the following
two models stated as hypotheses:

NH: E ��� � � � � ' � � � � with var ��� � � � �,+ D ���
AH: E ��� � � � � ' � � � � � ' �D �/D with var � � � � � � + D �-�

where the vectors of predictors and mean function coefficients have been similarly par-
titioned into � � � ��� � ��� D � � and ' � � �)' � �*' D �

�
. Let � � be the matrix consisting of

the 
 sample row vectors � � � stacked on top of each other. Let � D be defined similarly.
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Testing these hypotheses is equivalent to testing ' D ��� and the usual normal
theory method for this is an

�
-test of the ratio

� � � RSSNH � RSSAH ����� dfNH � dfAH �
�+ D

where RSS indicates residual sum of squares from the model fit and �+ D is the estimate
of + D from the fit of the AH model.

As an alternative, one way to test ' D ��� using the pivot method outlined above is
to choose the pivot

C � � �' D � ' D �
� � �

�
D�� � � D�� � ��� �' D � ' D �
�+ D

where � D�� � � ��� � � � � �
� � � � � $ � �

� � � � D , the part of � D with the linear effect of � �
subtracted out. Note that the numerator of C is just another way of writing RSSNH �
RSSAH.

Using the “ ���� is to �� as �� is to � ” idea mentioned in Section 5,

C � � � �' �D � �' D �
� � �

�
D�� � � D�� � ��� �' �D � �' D �
�+ � D

The � -value estimate is then the proportion of times that the bootstrap C � ’s are as large
or larger than the (original sample) observed value of C ,

C � � �'
�
D � �

�
D�� � � D�� � � �' D
�+ D

To actually compute C � and C � , note that

�' D � � �
�
D�� � � D�� � � $ � �

�
D�� ���

�' �D � � �
�
D�� � � D�� � � $ � �

�
D�� � � �

�' �D � �' D � � �
�
D�� � � D�� � � $ � �

�
D�� � � � � � � �

where � is the vector of responses. Thus

C � � � � � � � � � � D�� � � �
�
D�� � � D�� � � $ � �

�
D�� � � � � � � �

�+ � D

C � �
� � � D�� � � �

�
D�� � � D�� � � $ � �

�
D�� � �

�+ D
C � and C � can therefore be computed with full model (AH) simulation only, and with-
out the need to actually calculate the bootstrap coefficient estimates.

This procedure can be performed in Arc only using residual resampling, and then
only for linear models. This is independent of the “Bootstrap” menu item. Here is an
outline of the method:

� Fit the “Full model”. Suppose it is called L1.

� Fit the “subset model.” Suppose it is called L2.
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� Type the command

> (send L1 :sigtest-boot-pvalue L2 :nboots 999)

The program will return the bootstrap significance level corresponding to the�
-test for comparing the two models.

7 Generalizations

Some other areas in linear regression for which bootstrap methods have potential in-
clude prediction and variable selection. Also, the methods discussed in this report can
be extended to work with generalized linear models and nonlinear models. The com-
puter routines in boot.lsp can provide a starting point for these other methods.
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