ICOTS 7: Forming Small Class Groups Using Multidimensional Scaling

by Iain Pardoe University of Oregon, USA

July 3, 2006

О١	rerview	. 2
1.	The problem Cooperative learning and groups	
2.	Example to fix ideas Six student schedules—"yes" if busy	
3.	A solution—multidimensional scaling Multidimensional Scaling (MDS) Example revisited. Perceptual map.	. 8
4.	Class implementation Online survey	. 13
5.	Results Results	
	Discussion Discussion	15 15

Overview

- 1. The problem
- 2. Example to fix ideas
- 3. A solution—multidimensional scaling
- 4. Class implementation
- 5. Results
- 6. Discussion

 \bigcirc lain Pardoe, 2006 2 / 15

1. The problem

3 / 15

Cooperative learning and groups

- Cooperative learning: students work together to solve a problem or complete an assignment.
- Research has shown:
 - when students work together, they often accomplish more, and at a higher level, than they could individually (Johnson et al., 1991);
 - use of small group learning activities leads to better group productivity, improved attitudes, and sometimes, increased achievement (Garfield, 1993).
- My classes (undergraduate business statistics):
 - total 60 students;
 - 15 groups of 4 students each;
 - 18–33% of grade based on group work.

© Iain Pardoe, 2006 3 / 15

How to form class groups?

- Allow students to self-select groups.
 - o Problem: groups of friends with little diversity.
- Randomly assign students to groups.
 - Problem: students within groups sometimes have conflicting schedules.
- Suggestion from Garfield (1993): instructor forms groups to be either homogeneous or heterogeneous on particular characteristics.
 - Example: homogeneous on schedule, heterogeneous on diversity.
 - Added constraint: each group needs someone with computer/quantitative skills.

© lain Pardoe, 2006 4 / 15

2. Example to fix ideas

5 / 15

Six student schedules—"yes" if busy									
Student	Mon.4p	Mon.6p	Mon.8p	Tue.4p	Tue.6p				
S1	Yes	Yes	Yes	No	No				
S2	Yes	Yes	No	Yes	Yes				
S3	Yes	No	Yes	No	Yes				
S4	Yes	Yes	No	No	Yes				
S5	Yes	Yes	Yes	Yes	No				
S6	Yes	No	No	No	Yes				
Student	Tue.8p	Wed.4p	Wed.6p	Wed.8p	skills				
S1	Yes	Yes	No	Yes	1				
S2	No	Yes	No	No	0				
S3	No	Yes	Yes	Yes	0				

No

Yes

Yes

No

No

Yes

1

0

1

© Iain Pardoe, 2006

S4

S5

S6

5 / 15

Find matching schedules

No

Yes

No

Yes

Yes

Yes

- S1 and S5 can meet for group work two times.
- S2 and S4 can meet two times.
- S3 and S6 can meet three times.
- Imagine doing this for 60 students and 49 time slots!
- Is there a better way?

© lain Pardoe, 2006

6 / 15

Multidimensional Scaling (MDS)

- MDS: methods for displaying set of objects in low-dimensional space (often 2D) to reflect object similarities (see Kruskal and Wish, 1978).
- Input: matrix of pairwise similarities between objects (e.g., associations between student schedules).
- Analysis:
 - Metric MDS—eigenvalue decomposition similar to principal components;
 - Nonmetric MDS—optimization algorithm to minimize "stress" (badness of fit) between object similarities and map distances.
- Output: object coordinates in reduced-dimension space (e.g., reduce 9 time slots to 2 dimensions):
 - Use 2 dimensions to produce map where distances match student schedule similarities.

 \bigcirc Iain Pardoe, 2006 7 / 15

Example revisited

- Recall 6 students with mix of schedules (9 time slots).
- Pairwise correlations (equivalent to Kendall's tau in this case):

	S1	S2	S3	S4	S5	S6
S1		-0.16	0.00	0.16	0.76	-0.16
S2			-0.16	0.80	0.06	0.10
S3				0.16	-0.38	0.79
S4					-0.06	0.35
S5						-0.48

- Translate correlations into "dissimilarities" and feed into metric MDS.
- Analysis produces the following map . . .

© Iain Pardoe, 2006 8 / 15

Perceptual map

MDS of student schedules produces expected groupings:

© Iain Pardoe, 2006

9 / 15

10 / 15

Online survey

Use SAS to analyze survey data

- Online survey results fed into SAS.
- Use PROC CORR to calculate correlations.
- Use PROC MDS to run metric MDS.
- Use PROC GPLOT to produce map.
- All code available at my website (see end slide).
- Example: 60 students, 49 time slots from a recent quarter.
- Eyeball map to group "close" students (making sure each group has a member with computer/analytical skills) ...

© lain Pardoe, 2006 11 / 15

5. Results 13 / 15

Results

- Schedule correlations across whole class range from -0.5 to 1.0 (mean of 0.29).
- Within-group correlations for circled group on map range from 0.5 to 0.8.
- Within-group correlations for all 15 selected groups range from -0.10 to 1.0 (mean of 0.50).
- Histograms on next slide summarize overall improvement.
- However, some students (on edge of map) don't match anyone else—hard to place them in groups.

 \odot lain Pardoe, 2006 13 / 15

Before (upper) and after (lower) forming groups:

© lain Pardoe, 2006

14 / 15

6. Discussion 15 / 15

Discussion

- Problem: self-selected groups inhibit diversity, but randomly selected groups create scheduling problems.
- A solution: multidimensional scaling (MDS).
- Costs: SAS code, survey design and administration, eyeballing map.
- Benefit: increased group schedule compatibility, improved group effectiveness, fewer student complaints!
- Side-benefits: opportunities to explore concepts in class (surveys, association measures, MDS, statistical graphics).
- More information and SAS code at http://lcb1.uoregon.edu/ipardoe/research.htm.

© Iain Pardoe, 2006 15 / 15