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1. Application: income inequality and health in the U.S.

• Poverty: risk factor for premature mortality/increased morbidity

• But, does unequal income distribution in a society pose an

additional hazard to individual health within that society?

(Subramanian and Kawachi, 2004)

• Individual-level model measures relation between income and

health for individuals across all 50 states

• But, this ignores possibility that health outcomes within states

are correlated (due to income inequality, say)

• State-level model measures relation between income

inequality and aggregate (societal) health

• But, this fails to control for individual-level effects
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Multilevel model: combines individual and state models

• 2002 Current Population Survey, 2000 Census

• yij ∼ Bernoulli(pij), i : individual, j : state

y = 1 fair/poor health vs. y = 0 excellent/v.good/good health

• logit(pij) = αj + βTXij (Xij are individual-level predictors)

− equivalized income categories

− controls: age, gender, marital status, race, education,

insurance

• αj ∼ N(γTGj, σ
2) (Gj are state-level predictors)

−median household income

− Gini coefficient (income inequality)
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2. Multilevel regression modeling

• Huge potential for multilevel models (MLMs) to improve

undestanding of the world around us

• But, formulating, fitting, and understanding MLMs remains

difficult

• Goal: emulate linear regression

− idea (least squares)

− algorithm (software)

− choice of model specification

− diagnostics

− ways to understand results of fitted model
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3. Fitting a multilevel model

• Our approach: Bayesian inference using MCMC (Gibbs

sampler and Metropolis algorithm)

• Software: R and Bugs

• Other software: MLwiN (IGLS/RIGLS or MCMC), HLM (ML)

• Issues:

− redundant parameterization for Gibbs sampler

− weakly-informative prior distributions

− notation (depends on the model)

− viewing categorical predictors as latent data
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Predictor Estimate Std. error 95% interval

Intercept −5.0 0.1 −5.1, −4.9

Gini 0.1 0.0 0.0, 0.1

Median income −0.1 0.0 −0.1, 0.0

Age1 (25-44) 1.0 0.0 0.9, 1.1

Age2 (45-64) 2.1 0.0 2.0, 2.2

Age3 (>64) 2.6 0.1 2.6, 2.8

Divorced 0.3 0.0 0.2, 0.3

Widowed 0.2 0.0 0.1, 0.2

Single 0.2 0.0 0.1, 0.2

Black 0.3 0.0 0.3, 0.4

Hispanic 0.0 0.0 −0.1, 0.1

Other 0.2 0.0 0.1, 0.2
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Predictor Estimate Std. error 95% interval

Female 0.0 0.0 0.0, 0.1

Some college 0.4 0.0 0.4, 0.5

High school 0.7 0.0 0.6, 0.7

Some hi-sch 1.1 0.0 1.1, 1.2

< hi-sch 1.3 0.0 1.2, 1.4

Inc1 (50-75k) 0.1 0.1 0.0, 0.2

Inc2 (30-50k) 0.4 0.0 0.3, 0.5

Inc3 (15-30k) 0.8 0.0 0.7, 0.9

Inc4 (<15k) 1.4 0.0 1.3, 1.4

Uninsured −0.3 0.0 −0.4, −0.2
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4. Displaying/understanding multilevel mean parameters

• Extend ideas in Gelman et al. (2002):

− summarize inferences by simulations

− graph regression lines, uncertainties, and data

− graph group-level regression lines, uncertainties, and

group-level estimates

• Average predictive effects (Gelman and Pardoe, 2005a):

change in response change as predictor changes, averaged

over predictor distribution (incorporating parameter uncertainty)

− works for nonlinear mean functions, interactions, and

variance components (see also Gelman, 2005)

− graphs of average predictive effects (Pardoe and Shor, 2005)
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Predictive effect (PE) for an input variable:

“The expected change in the response per unit change in the

input, with all other inputs held constant”

PE(u(1)→u(2), v, θ) =
E(y|u(2), v, θ)− E(y|u(1), v, θ)

u(2) − u(1)

where u is the input of interest, v represents the other inputs,

u(1) is the initial value of u, and u(2) is the final value of u.

APE: average over distributions for x = (u, v) and θ.

Weights, wij =
|uj−ui|

1+(vi−vj)TΣ−1
v (vi−vj)

.
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5. Displaying/understanding multilevel variance parameters

• Gelman (2005) revisits ANOVA to motivate Bayesian ANOVA,

and finite-population and super-population variances

• Gelman and Pardoe (2005b) generalize explained variance

(R2) at each level of an MLM. Equivalent to usual definition of

R2 in classical least-squares regression. Average over

regression parameter uncertainty: “Bayesian adjusted R2.”

• Gelman and Pardoe (2005b) also propose a related variance

comparison to summarize degree to which estimates at each

level of MLM are pooled together based on level-specific

regression relationship, rather than estimated separately. In

simple random-intercepts MLM, related to “shrinkage.”
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General multilevel model:

θ
(m)
k = µ

(m)
k + ε

(m)
k , for k = 1, . . . , K(m)

Explained variance:

R2 = 1−
E

(
V

K

k=1
εk

)

E
(

V
K

k=1
θk

) = 0.35

1. Compute the vectors of “responses” θk, “predicted values” µk,

and “errors” εk = θk − µk

2. Compute the sample variances, V
K

k=1
θk and V

K

k=1
εk

3. Average over the simulation draws to estimate E
(

V
K

k=1
θk

)
and

E
(

V
K

k=1
εk

)
, and then use these to calculate R2
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General multilevel model:

θ
(m)
k = µ

(m)
k + ε

(m)
k , for k = 1, . . . , K(m)

Pooling factor:

λ = 1− V
K

k=1
E(εk)

E
(

V
K

k=1
εk

) = 0.19

1. For each k, estimate the posterior mean E(εk) of each of the

errors εk as defined previously

2. Compute V
K

k=1
E(εk)—that is, the variance of the K values of

E(εk)—and then use this, along with E( V
K

k=1
εk) from the R2

calculation to calculate λ
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6. Diagnostics for model checking

• Questions naturally arise as to whether an MLM provides an

adequate fit to the data

• Is the computational burden of an MLM over a non-multilevel

model justified?

• Bayes marginal model plots Pardoe (2004) can be used to

visualize goodness of fit in multilevel settings

− can clearly demonstrate the need to consider MLMs when

analyzing such data
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