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ABSTRACT

There is large variation in levels of imprisonment across the United

States, with some states’ imprisonment rates six times higher than oth-

ers. Use of prison in sentencing decisions also varies considerably

between counties within states; previous research based on counties

as the unit of analysis suggests that variables such as crime rate, un-

employment level, racial composition, and geographic region account

for some of this variation. Other studies, using individual felons as the

unit of analysis, demonstrate how demographics, criminal history, case

characteristics, and type of offense affect sentence severity. This paper

considers the effects of both county-level and individual-level variables

on whether or not a convicted felon receives a prison sentence, rather

than a jail or non-custodial sentence. We analyze felony court case

processing data for 1996 from 30 of the nation’s most populous urban

counties using a Bayesian hierarchical logistic regression model.

Key Words: Gibbs sampling; Hierarchical model; Logistic regression;

Markov chain Monte Carlo; Mixed effects
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FELONIES DATA

May 1996: 9,110 convictions, 4,358 with complete data, 30 counties, 16

states (Bureau of Justice Statistics’ State Court Processing Statistics).

Y = 1 if offender received a prison sentence, 0 for jail or non-custodial

sentence. 7-45% of offenders in counties went to prison (ave. 30%).

IMAL = 1 for men, 0 for women.

IBLK = 1 if offender is African American, 0 if not.

Type of offense based on offender’s most serious conviction (reference

category includes weapons, driving-related, and public order offenses):

ICVS for murder, rape or robbery;

ICVM for assault or other violent crime;

ICTR for a drug trafficking offense;

ICDR for a drug possession offense; and

ICPR for burglary or theft, i.e. a property offense.

ICJS = 1 for an active criminal justice status, 0 otherwise.

IPFE = 1 for prior felony convictions, 0 otherwise.

IPMI = 1 for prior misdemeanor convictions, 0 otherwise.

IDET = 1 if offender was detained after being charged, 0 if released.

IREV = 1 if offender’s pretrial release was revoked, 0 otherwise.

IBAD = 1 if offender’s pretrial release was not revoked after a rearrest.

ITRI = 1 if offender was convicted by trial, 0 if convicted by plea.

CARR = county’s arrest rate per 10,000 residents in 1996.

CUNR = county’s unemployment rate for 1996.

CBLP = % of county’s population that was African American in 1996.

CSTH = 1 if county is located in a Southern state, 0 otherwise.
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Fig. 1: Sample means for individual-level variables.

Variable Mean SD Min Max

CARR 582.83 228.04 293 1,349

CUNR 5.62 1.96 3.5 10.6

CBLP 21.85 16.15 1.9 64.8

CSTH 0.20 0.41 0 1

Table 1: Descriptive statistics for county-level variables

Fig. 1 and Table 1 provide univariate summaries of the data.
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HIERARCHICAL LOGISTIC REGRESSION MODEL

We take a Bayesian approach, using a generalization of the model of

Wong and Mason (1985). First, the usual logistic regression model is fit

to nj individuals within each of J = 30 counties. For the i-th individual in

the j-th county, we observe a dichotomous response,

Yij =





1 for a prison sentence

0 for a non-prison (jail or non-custodial) sentence

Then Yij|pij ∼ Bernouilli(pij), where pij = Pr(Yij = 1), and

logit(pij) = log

(
pij

1− pij

)
= XT

i βj (1)

where Xi respresents K individual-level variables and βj consists of K

unknown regression coefficients (specific to the j-th county). Next, to al-

low the K regression coefficients to be related across counties, assume

each coefficient can be explained by up to L county-level variables,

βj = Gjη + αj (2)

where Gj is a K×M block-diagonal matrix of L county-level variables, η

consists of M unknown regression coefficients, and αj is a K × 1 vector

of county-level errors. Combining (1) and (2) leads to

logit(pij) = XT
i Gjη + XT

i αj (3)

Conventionally, the η-parameters in (3) are fixed effects while the α-

parameters are random effects. Mixed models like this can be fit using

specialized computer software such as “MLwiN” and “HLM”. An alterna-

tive approach is to put the model into a Bayesian framework.
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ESTIMATION

Priors: η flat; αj ∼ N(0,Γ−1), where 0 is a K-vector of zeros and Γ−1

is a K × K covariance matrix; Γ ∼ Wishart(R, K), where R can be

considered a prior estimate of Γ−1 based on K observations, and, to

represent vague prior knowledge, the Wishart degrees of freedom is

set as small as possible to be K.

We used “WinBUGS” to generate posterior η and αj samples. R was

specified to have values 0.1 along the diagonal and 0.005 elsewhere.

Sensitivity analysis confirmed that the choice of R has little effect on

the results. We began with K = 15 individual-level and L = 5 county-

level variables (including intercepts), i.e. 75 terms in total. We ran four

chains for 1,500 iterations, discarding 500 burn-in samples from each.

With so many η’s, many were estimated with considerable imprecision.

In particular, nine η’s (corresponding to interactions) had posterior SD’s

at least twice the absolute value of their posterior means; we excluded

these interactions from subsequent models. We continued to reduce

the number of model terms in this way; our final model included just 30

terms, with all interactions having posterior standard deviations no more

than 0.6 times the absolute value of their posterior means.

In generating samples, CARR, CUNR, and CBLP were centered at

their sample means and scaled by their sample standard deviations.

After running four chains for 13,000 iterations, trace plots showed good

mixing and MCMC convergence diagnostics indicated convergence. In

particular, the 0.975 quantiles of the “corrected scale reduction factor”

(Brooks and Gelman 1998) for the η’s were each less than 1.3.
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MODEL ASSESSMENT

Before interpreting results, we assessed underlying assumptions of the

model. Posterior samples of the αj can be thought of as residuals, and

so lend themselves to the usual kinds of model diagnostics. The fact

that they averaged very close to zero across counties is reassuring, but

unsurprising. More open to doubt are the normality and exchangeability

assumptions. However, normal probability plots revealed no strong ab-

normalities, and plotting posterior means of the αj against county-level

covariates also revealed no worrisome patterns (plots not shown).

We also carried out a sensitivity analysis for R. Specifying R to have

values 0.1 along the diagonal and −0.005 elsewhere lead to changes in

posterior means for the η’s averaging 0.03 in absolute value, with none

larger than 0.10. Increasing the elements of R by a factor of 100 lead to

changes averaging 0.13 in absolute value, with none larger than 0.37.

Finally, we checked the fit of the model using a generalization of the

“Bayes marginal model plot” (BMMP) of Pardoe (2001). Here, the re-

sponse, Y , is plotted against functions of the predictors, h(X). A non-

parametric smooth of Y provides a model-free estimate of the mean

function in this plot, while a nonparametric smooth of the fitted val-

ues provides a comparable model-based estimate. Smooths matching

closely for any h provide support for the model; otherwise model in-

adequacy is indicated. Adding model-based smooths using posterior

samples allows this assessment to be made more easily. For example,

Fig. 2 is a BMMP with h = XT
i Gjη̂, where η̂ is the posterior mean.

The blue smooth of the data passes through the center of the red
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Fig. 2: Bayes marginal model plot with h = XT
i Gjη̂, where η̂ is the posterior mean.

The data have been jittered to aid visualization of relative density and the smooths are

smoothing splines with six effective degrees of freedom.

band of model-based smooths of 1/(1 + exp(−XT
i Gjη

∗)), where η∗ are

100 posterior samples. So, there is no indication of lack-of-fit from this

plot, or indeed from similar plots with other h-functions. Further dis-

cussion of model-checking plots for hierarchical logistic regression is

provided in [work to be presented at JSM 2002 in New York!].
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RESULTS

Table 2: Posterior summaries for 10,000 samples (500 sample burn-in and only every
fifth sample retained), with stars indicating HPD intervals that exclude zero.

Term Mean SD 95% HPD interval exp(Mean)

CARR 0.218 0.130 −0.047 0.467 1.243

CUNR −0.132 0.163 −0.442 0.196 0.876

CBLP 0.008 0.198 −0.389 0.388 1.008

CSTH 0.847 0.450 −0.028 1.730 2.333

IMAL 0.538 0.163 0.223 0.855 * 1.712

IBLK −0.022 0.121 −0.247 0.224 0.978

ICVS 2.864 0.255 2.362 3.374 * 17.532

CUNR.ICVS 0.370 0.207 −0.041 0.781 1.447

ICVM 2.176 0.249 1.695 2.671 * 8.811

ICTR 1.941 0.266 1.397 2.462 * 6.966

CARR.ICTR 0.383 0.119 0.149 0.618 * 1.466

ICDR 0.617 0.330 −0.103 1.228 1.854

ICPR 1.176 0.243 0.704 1.646 * 3.241

ICJS 0.514 0.127 0.278 0.779 * 1.672

IPFE 0.634 0.143 1.354 1.910 * 5.124

CUNR.IPFE 0.501 0.139 0.234 0.782 * 1.651

CBLP.IPFE −0.311 0.150 −0.612 −0.024 * 0.733

CSTH.IPFE −0.663 0.345 −1.322 0.006 0.515

IPMI −0.077 0.139 −0.343 0.206 0.926

CBLP.IPMI −0.324 0.137 −0.581 −0.054 * 0.724

CSTH.IPMI 0.578 0.334 −0.085 1.219 1.783

IDET 2.261 0.170 1.941 2.610 * 9.593

CSTH.IDET −0.776 0.374 −1.491 −0.029 * 0.460

IREV 1.699 0.199 1.284 2.066 * 5.468

CSTH.IREV −1.222 0.587 −2.441 −0.132 * 0.295

IBAD 0.565 0.325 −0.090 1.185 1.759

CARR.IBAD 0.559 0.272 0.026 1.101 * 1.749

CBLP.IBAD −1.049 0.450 −1.964 −0.215 * 0.350

ITRI 1.191 0.265 0.674 1.715 * 3.290
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Fig. 3: Estimated odds ratios (solid lines), 95% HPD end-points (dashed lines), and

county estimates (numbers), for IMAL, ICVM, ICDR, ICPR, ICJS, and ITRI.

Consider IMAL and Fig. 3. Solid line is the estimated odds ratio, i.e.

exponentiated posterior mean of the appropriate η. Dashed lines are

the exponentiated end-points of the 95% HPD interval. The numbered

points are the estimated odds ratios within each county, i.e. exponenti-

ated posterior mean of the sum of the appopriate η and αj.
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Fig. 4: Estimated odds ratios (solid lines), 95% HPD end-points (dashed lines), and

county estimates (numbers), for IDET and IREV, in Non-Southern and Southern coun-

ties.

Interaction terms involve all four county-level variables; those involv-

ing only CSTH are the easiest to interpret. For example, posterior mean

of the η for the CSTH.IDET interaction is negative, so being detained pre-

trial (IDET) has a lesser effect on odds of receiving a prison sentence in

the South, exp(2.261− 0.776) = 4.415, than elsewhere, exp(2.261) = 9.593.

Fig. 4, constructed similarly to Fig. 3 above but taking into account the

CSTH interactions, illustrates the effects for IDET and IREV.

Consider ICVS and Fig. 5. Green line shows estimated odds ratio for
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Fig. 5: Estimated odds ratios (green lines), posterior samples (orange lines), and

county estimates (numbers), for ICVS and ICTR as functions of CUNR and CARR.

severe violent charges increasing from exp(2.864 − (1.078 × 0.370)) =

11.772 when unemployment is at its minimum to exp(2.864 + (2.538 ×
0.370)) = 44.778 when unemployment is at its maximum. Orange lines

represent 100 posterior samples for the ICVS and CUNR.ICVS coeffi-

cients. Numbers represent estimated odds ratios for each county.
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Fig. 6: Estimated odds ratios for IPMI (green lines), posterior samples (orange lines),

and county estimates (numbers), as a function of CBLP in Non-Southern and Southern

counties. Horizontal dashed line represents “no effect”.
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Fig. 7: Estimated odds ratios for IBAD (green lines), posterior samples (orange lines),

and county estimates (numbers), as functions of CARR and CBLP.

Fig. 6 for IPMI combines the features of Fig. 4 and Fig. 5, while Fig. 7

for IBAD generalizes Fig. 5.

12



2
3 4

5

6
7

8

910

11

13

14

15
18

19

2021

22

23

24

25
26 27

30

5

10

15

20
Non-Southern County

4 6 8 10

1 12
16 1728 29

5

10

15

20
Southern County

Unemployment Rate

P
rio

r 
F

el
on

y 
E

ffe
ct

2
3 4

5

6
7

8

910

11

13

14

15
18

19

2021

22

23

24

25
26 27

30

5

10

15

20
Non-Southern County

0 10 20 30 40 50 60

1 12
16 172829

5

10

15

20
Southern County

Percentage African American

Fig. 8: Estimated odds ratio for IPFE (green lines), posterior samples (orange lines),

and county estimates (numbers), as functions of CUNR and CBLP in Non-Southern

and Southern counties.

Finally, there are three interactions involving IPFE: with CUNR, CBLP

and CSTH. Interpretation of the effects of IPFE can be illustrated by com-

bining the features of Fig. 6 and Fig. 7 in Fig. 8. Prior felonies increase

the odds of receiving a prison sentence, but that effect varies widely

with unemployment rate (it increases as unemployment increases), per-

centage African American (it decreases as percentage increases), and

whether county is in the South (it is smaller in the South).
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Fig. 9: Posterior samples expressed as odds ratios for one SD increases in CARR,

CUNR, and CBLP, and Southern region effects for different categories of individual.

Fig. 9 shows effects from the perspective of county-level variables.
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DISCUSSION

This study advances understanding of how individual-level and county-

level variables combine to affect punishment severity, using Bayesian

multilevel modeling applied to sentencing data from 30 of the 75 most

populous counties in 16 states. These counties are clearly a distinct

group as there are more than 3,100 counties in the United States. Nev-

ertheless, these counties have a disproportionate impact on the use

of criminal justice system resources (e.g., prison and jail bed space)

and the number of offenders affected. In 1996, the 75 most populous

counties accounted for 37% of the U.S. population, 50% of all reported

serious violent crime in the U.S., and 43% of all felony convictions.

Use of only large urban counties may account for some of the un-

expected results obtained, e.g., prior studies suggested that CBLP and

CSTH would have a positive effect on sentence severity, whereas our

analysis found the opposite. Possible explanations include increased

political power for African Americans in large urban counties making

racial bias less likely, and large Southern counties differing from medium

and small ones in terms of sentencing practices.

Other contextual factors whose effects on sentencing decisions merit

further study include size of jurisdiction, urbanization, applicable laws

(e.g., mandatory prison terms), political conservatism, level of bureau-

cratization, and case processing styles (e.g., percent of the caseload

disposed by trial). Also, analysis of alternative outcome measures such

as sentence length (or actual time served) and the use of prison sen-

tences relative to jail sentences could have important policy relevance.
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