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Summary. Every year since 1928, the Academy of Motion Picture Arts and Sciences has recog-
nized outstanding achievement in film with their prestigious Academy Award, or Oscar. Before
the winners in various categories are announced, there is intense media and public interest in
predicting who will come away from the awards ceremony with an Oscar statuette. There are
no end of theories about which nominees are most likely to win, yet despite this there continue
to be major surprises when the winners are announced. The paper frames the question of pre-
dicting the four major awards—picture, director, actor in a leading role and actress in a leading
role—as a discrete choice problem. It is then possible to predict the winners in these four cate-
gories with a reasonable degree of success. The analysis also reveals which past results might
be considered truly surprising—nominees with low estimated probability of winning who have
overcome nominees who were strongly favoured to win.

Keywords: Bayesian; Conditional logit; Films; Forecasting; Mixed logit; Motion pictures;
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1. Introduction

Hundreds of millions of television viewers world wide watch the annual Academy Awards cere-
mony to see the Academy of Motion Picture Arts and Sciences (AMPAS) honour outstanding
achievement in film from the previous year. Since 1928, AMPAS members have voted for the
nominees and final winners of Academy Awards, which are more commonly known as Oscars,
in a wide range of categories for directing, acting, writing, editing, etc. The Oscars are generally
recognized to be the premier awards of their kind since the almost 6000 AMPAS members are
among the foremost workers in the motion picture industry.

Besides honouring cinematic accomplishments in the most glamorous manner, Oscars have
direct practical repercussions. For instance, winning a Best Actor or Best Actress Oscar can
increase the income that recipients can later command and the quality of screenplays that are
sent their way. In addition, Oscar awards and nominations can boost the box office performance
of films by millions of dollars (see, for example Deuchert et al. (2005), Dodds and Holbrook
(1988) and Nelson et al. (2001)). Furthermore, although many factors are associated with a
film’s gross earnings (Collins et al., 2002; Simonoff and Sparrow, 2000; Terry et al., 2005a, b),
the financial consequence of Oscars operates independently of other significant predictors
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(Litman, 1983; Sochay, 1994). As an example, although a film’s production costs are posi-
tively correlated with gross earnings (Prag and Casavant, 1994; Simonton, 2005a), there is little,
if any, association between budget and the most important movie awards, such as the directing,
acting and screenplay Oscars (Simonton, 2005a, b).

Yet are these noteworthy repercussions of Oscar recognition actually justified? Many critics
believe that the Academy Awards are almost completely contaminated by local Hollywood pol-
itics and provincial tastes (e.g. Peary (1993)). If so, then the individual and financial rewards are
bestowed without merit and thus may be totally unfair. This issue has been addressed in two
major ways.

First, investigators can simply determine whether Oscar nominations and awards are pos-
itively and significantly related to alternative ways of assessing cinematic achievement. For
example, research shows that Oscar recognition is strongly associated with other awards, such
as the Golden Globes which are bestowed by the Hollywood Foreign Press Association, a
group of international journalists based in Southern California (Simonton, 2004a, b), and with
critical acclaim, as gauged by the ratings that films receive in various movie guides (Simon-
ton, 2002, 2004a). On the basis of these and other statistical relationships, Simonton (2004a),
page 171, observed that ‘Those who take an Oscar home can have a strong likelihood of
having exhibited superlative cinematic creativity or achievement’. Indeed, among all major
awards the Oscars appear to be the strongest indicators of merit (Ginsburgh, 2003; Simonton,
2004a).

Second, researchers can adopt a more ambitious predictive modelling strategy. Rather than
simply considering correlations between pairs of variables, models for predicting Oscar out-
comes can provide more detailed information about the magnitude of correspondence between
the variables, and the number and extent of prediction errors. For instance, when Bennett and
Bennett (1998) attempted to predict the winners of the best acting Oscars from 1936 to 1996,
they achieved a successful prediction rate of 47% for Best Actor and 39% for Best Actress. Given
the number of nominees in each of these two categories (generally 5), these results amply exceed
baseline expectation. Although many in the media (as well as movie-loving members of the
public) make their own annual predictions, this study, although somewhat limited by arbitrary
variable definitions and ad hoc estimation techniques, appears to be the only previous analysis
of this type in the literature.

The current investigation aims at developing this second strategy well beyond previous efforts.
We focus on predicting the winners of the four major awards—picture, director, actor in a lead-
ing role and actress in a leading role—from those who were nominated each year. By developing
statistically rigorous models for this task and identifying the prediction errors, it is possible to
reveal specific cases in which the evaluative system that is implicit in the Oscar process may
have been unjust, arbitrary or capricious. Beyond this, such error identification could lead to
the eventual development of predictive models that introduce additional variables that isolate
the source of the error. Some of these variables may be indicative of merit, but other variables
could represent factors that are extraneous to actual cinematic achievement.

In contrast with the limited previous research on predictive modelling of Oscar outcomes,
there is a wealth of research on motion picture industry economics (see De Vany (2004, 2006)
and Walls (2005) for surveys). As pointed out by a referee, Caves (2000) referred to the ‘nobody
knows principle’ (which was originally coined by screenwriter William Goldman), whereby
much information on previous movie success fails to help us to predict reliably how successful
the next movie will be. This extreme ex ante uncertainty dominates the distribution of profits,
which tend to be stable Pareto distributed with a heavy upper tail (De Vany, 2006). As a result,
Schulze (2005), page 157, concluded that



Models to Predict Academy Award Winners 377

‘As ex ante uncertainty is a dominant feature of the movie industry and informational cascades deter-
mine the dynamics of a movie and thus its financial success, it seems necessary to analyze how this
information transmission can be influenced once the movie has been released. The most visible quality
signals are nominations for the Academy Awards, and the awards themselves.’

The research that is reported in the current paper would appear to complement this economics-
based literature, although its focus on predicting movie award outcomes is very different from
predicting financial performance outcomes. In addition, although extreme uncertainty shapes
movie industry economics, this work shows that a far greater degree of predictability appears
to pervade some major movie awards.

The outline of the paper is as follows. Section 2 describes the data that are used—since the goal
is to predict the eventual winner from a list of nominees, any information on the nominees that
is available before the announcement of the winner is potentially useful, including other Oscar
category nominations, previous nominations and wins and other (earlier) movie awards. Section
3 motivates the discrete choice models that are used to provide annual predictions and discusses
the modelling process. The modelling approach that is used allows 1-year-ahead, out-of-sample
prediction of the four major Oscars from 1938 to 2006 (earlier years had yet to accumulate
sufficient information to provide satisfactory predictions). Presentation of the final results in
Section 4 includes interesting insights into just how predictable the four major Oscars are, which
factors play an important role in the predictions and also how these have changed over time.
It is also revealing to identify past winners with an exceptionally low estimated probability of
winning, and past nominees with a very high estimated probability of winning who did not
actually win. Finally, Section 5 contains a discussion, including ideas for how this work could
be further developed in the future.

This paper extends earlier work in Pardoe (2005). In particular, this paper compares Bayesian
estimation with maximum likelihood estimation for this application and also considers whether
a more complex mixed logit model provides additional benefits over the standard multinomial
logit model. This paper also expands on details of variable selection and model assessment,
draws more extensively on economics and econometrics literature, includes two more years of
data and contains additional discussion and many more references.

2. Data

All data were obtained from a reliable Internet source, namely ‘The Internet movie database’
(us.imdb.com). Table 1 outlines the explanatory variables that are used to predict the four
major Oscar winners from 1938 to 2006 and also provides data ranges for the predicted years’
awards (each variable was included only for the years in which it provided some predictive
power—see also Section 3.3). Additional details on the variables follow (see also Pardoe (2005)).

Nominees for Best Picture and Best Director are often also represented by multiple nominees
in other categories, and the chances of winning are generally thought to increase the higher the
total number of nominations. For example, the median number of nominations for winners of
the Best Picture and Best Director Oscars since their inception (1928–2006) is 9, whereas the
median number of nominations for losing nominees is 6.

Nominees tend to fare better if they are nominated for movies receiving Best Picture and/or
Best Director Oscar nominations.

(a) Only three movies have won the Best Picture Oscar without also receiving a Best Director
nomination (Wings in 1928, Grand Hotel in 1932 and Driving Miss Daisy in 1989). In
1928, the Best Unique and Artistic Picture winner, Sunrise, also did not receive a Best
Director nomination.
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Table 1. Explanatory variables that are used to predict the four major Oscar winners from 1938
to 2006 and data ranges

Variable Picture Director Lead actor Lead actress

Total Oscar nominations 1938–2006 1939–2006 — —
Director Oscar nomination 1938–2006 — — —
Picture Oscar nomination — 1944–2006 1939–2006 1939–2006
Golden Globe drama 1946–2006 1945–1950 1944–2006 1944–2006
Golden Globe musical or comedy 1956–2006 — 1965–2006 1952–2006†
Guild award 1951–2006‡ 1951–2006§ 1995–2006 1996–2006
Previous Oscar nominations§§ — 1938–2006 1938–2006 —
Previous Oscar wins§§ — — 1939–2006 1938–2006
1st front-running movie 1938–2006 1938–2006 1938–2006 1938–2006
2nd front-running movie 1959–2006 1959–2006 1959–2006 1959–2006
3rd front-running movie 1959–2006 1959–2006 1959–2006 1959–2006

†Variable dropped between 1961 and 1972 because the standard error greatly exceeded the estimate.
‡Directors Guild of America for 1951–1988; Producers Guild of America for 1989–2006.
§Separate indicators were not included for both the Golden Globe Best Director and Directors Guild
of America awards from 1951 onwards because of collinearity between the two awards.
§§Transformed to natural logarithms.

(b) Only two directors have won a Best Director Oscar for a movie that was not nominated
for Best Picture (Lewis Milestone for Two Arabian Nights in 1928 and Frank Lloyd for
The Divine Lady in 1929).

(c) Only 13 actors have won the Best Actor Oscar for a movie that was not nominated for
Best Picture (most recently, Forest Whitaker for The Last King of Scotland in 2006).

(d) Only 26 actresses have won the Best Actress in a Leading Role Oscar for a movie that was
not nominated for Best Picture (most recently, Reese Witherspoon for Walk the Line in
2005).

The Hollywood Foreign Press Association has awarded its Golden Globes every year since
1944 to honour achievements in film during the previous calendar year. Since Oscars are pre-
sented some time after Golden Globes (up to 2 months later), winning a Golden Globe often
forecasts winning an Oscar.

(a) Of the 64 Best Picture Oscar winners from 1943 to 2006, 34 had previously won the
Golden Globe for Best Picture (Drama).

(b) The Golden Globe award for Best Picture was separated into two distinct categories in
1951: Drama and Musical or Comedy. Of the 56 Best Picture Oscar winners from 1951
to 2006, 10 had previously won the Golden Globe for Best Picture (Musical or Comedy).

(c) Of the 64 Best Director Oscar winners from 1943 to 2006, 35 had already won the Golden
Globe for Best Director.

(d) Of the 129 Best Actor Oscar winners from 1943 to 2006, 41 males had previously won the
Golden Globe for Best Actor (Drama) and 32 females had previously won the Golden
Globe for Best Actress (Drama).

(e) Of the 115 Best Actor Oscar winners from 1950 to 2006, six males had previously won
the Golden Globe for Best Actor (Musical or Comedy) and 12 females had previously
won the Golden Globe for Best Actress (Musical or Comedy).

The Directors Guild of America (DGA) has been awarding its honours for Best Motion
Picture Director since 1949 (with all except two early awards made before the announcement
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of the Best Picture Oscar). Since 1989, the Producers Guild of America has been awarding its
honours to the year’s most distinguished producing effort (with all except the first awarded
before the announcement of the Best Picture Oscar). Since 1994, the Screen Actor’s Guild has
awarded five statuettes, which are known as ‘The Actor’, for achievements in film (always before
the Oscar ceremony), including Male Actor in a Leading Role and Female Actor in a Leading
Role.

(a) Of the 40 Best Picture Oscar winners from 1949 to 1988, 31 had already won a DGA
award (and two would subsequently win one).

(b) Of the 18 Best Picture Oscar winners from 1989 to 2006, 10 had already won a Producers
Guild of America award (and one would subsequently win one).

(c) Of the 58 Best Director Oscar winners from 1949 to 2006, 51 had already won a DGA
award (and one would subsequently win one).

(d) Of the 26 Best Actor Oscar winners since 1994, nine males had already won a Screen
Actor’s Guild award and 10 females had already won one.

Nominees for Director and Lead Actor seem to have an increased chance of winning the more
times they have been nominated in previous years, whereas nominees for Lead Actor and Lead
Actress seem to have a decreased chance of winning the more times they have won in previous
years. These variables were log-transformed because they are highly skewed.

(a) 17% of Best Director Oscar nominees with no previous directing nominations have won
the Oscar, whereas 24% of Best Director Oscar nominees with one or more previous
directing nominations have won.

(b) 20% of Best Actor Oscar nominees with no previous lead actor nominations have won
the Oscar, whereas 22% of Best Actor Oscar nominees with one or more previous lead
actor nominations have won.

(c) 23% of Best Actor Oscar nominees with no previous lead actor wins have won the Oscar,
whereas 10% of Best Actor Oscar nominees with one or more previous lead actor wins
have won.

(d) 24% of Best Actress Oscar nominees with no previous lead actress wins have won the
Oscar, whereas 12% of Best Actress Oscar nominees with one or more previous lead
actress wins have won.

The indicator variable for the first ‘front-running movie’ allows for the possibility that a nom-
inee’s chance of winning an Oscar could be linked to the fortunes of other nominees for the same
movie. Each year often a handful of movies are considered to be the Oscar front-runners—mov-
ies with multiple nominations in the more high profile categories (including picture, director
and acting). To identify these front-runners, the Oscar categories were ranked each year on
the basis of previous Best Picture Oscar winners (e.g. the Best Director category usually ranks
highly since Best Picture winners nearly always also have a Best Director nomination). Then, a
‘nomination score’ was calculated for each nominated movie on the basis of these rankings (e.g.
movies with many nominations in the top-ranked categories will have higher nomination scores
than movies with few nominations). The indicator variable then identifies the top front-runner
as the movie with the highest nomination score and takes the value 1 for all nominees who are
associated with this movie. Indicator variables for the second and third front-running movies
were derived similarly.

Although a variable for previous Best Director Oscar nominations was included, adding a
variable for the number of previous Best Director Oscar wins tended to worsen rather than to
improve predictions. Conversely, although a variable for previous Best Actress Oscar wins was



380 I. Pardoe and D. K. Simonton

included, adding a variable for the number of previous Best Actress Oscar nominations tended
to worsen predictions. Also, although a variable for the total number of nominations improves
predictions of the Best Picture and Best Director Oscar winners, such a variable worsens pre-
dictions of the acting Oscar winners.

It is well documented that female winners of acting Oscars tend to be younger than male
winners (Markson and Taylor, 1993; Gilberg and Hines, 2000). For example, the median age of
Best Actress Oscar winners between 1928 and 2006 was 33 years, whereas that for Best Actor was
42 years. However, within-gender age differences between Oscar winning and losing nominees
are less dramatic. In the first third of the Oscars’ history (1928–1953), the median age of Best
Actress winners was 29 years versus that of losing nominees of 33 years. Comparable figures for
the second third (1954–1979) are 34 years versus 34 years, and for the final third (1980–2006)
are 35 years versus 37 years. In other words, actress nominee ages have increased over time,
with winning nominees tending to be slightly younger than losing nominees (less so during the
middle period). For Best Actor nominees, comparable figures for the first third are 41 years
versus 38 years, for the second third are 43 years versus 39 years and for the final third are 43
years versus 45 years. Thus, actor nominee ages have also increased over time, with winning
nominees tending to be slightly older than losing nominees initially, but tending to be slightly
younger more recently. Age effects of this nature on the chance of winning an acting Oscar can
be picked up by adding age and age-squared variables (i.e. quadratic terms) to the models for
Best Actor and Best Actress. Nevertheless, incorporating quadratic terms for age in the models
failed to improve predictions of winners.

Other variables that were investigated but that did not improve results include supporting
actor Oscar nominations and wins, genre of the nominated movie (drama, comedy, etc.),
Motion Picture Association of America rating (‘PG’, ‘R’, etc.), running time (i.e. the length
of the movie), release date, movie critic ratings and other pre-Oscar awards (e.g. New York
Film Critics Circle, Los Angeles Film Critics Association, National Society of Film Critics
and National Board of Review). Some of these, although perhaps correlated to some extent
with Oscar wins, failed to improve on variables that were already included—for example,
of all the pre-Oscar awards, the Golden Globes and Guild awards are the most predictive
of future Oscar wins. Other variables were excluded partly because of difficulties in obtain-
ing reliable measurements over time—for example, it is difficult to find a long time series of
consistent movie critic ratings that would have been available before a particular year’s Oscar
results.

3. Estimation

Our goal is to predict the winners of the four major Oscar categories for each year from 1938 to
2006 by using nominee information that is available before announcement of the winners. This
can be framed as a series of discrete choice problems with one winner selected in each category
each year from a discrete set of nominees (usually 5, although until 1936 the number of director
and acting nominees varied between 3 and 8, and until 1944 the number of picture nominees
varied between 5 and 10.

In this particular application, the explanatory variables in Table 1 take different values for
different response (nominee) alternatives. McFadden (1974) proposed a discrete choice model
for just such a case where explanatory variables are characteristics of the choice alternatives.
This model also permits the choice set to vary across choice experiments, which in this case
are each of the four categories (picture, director, actor and actress) in each of the years (1938–
2006).
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For experiment i and choice alternative j, let xij = .xij1, . . . , xijp/T denote the values of p
explanatory variables, and let xi = .xi1, . . . , xip/. Conditional on the choice set Ci for experi-
ment i, the probability of selecting alternative j is

Pr.Y = j|xi/= exp.βTxij/
/ ∑

h∈Ci

exp.βTxih/, .1/

where Y is the categorical response variable representing the winning nominee. For each pair
of alternatives a and b, this model has the logit form

log{Pr.Y =a|xi/=Pr.Y =b|xi/}=βT.xia −xib/:

Conditional on the choice being a or b, a variable’s effect depends on the difference in the
variable’s values for those alternatives. If the values are the same, then the variable has no effect
on the choice between a and b. Thus McFadden originally referred to this model as a conditional
logit model. In contrast with this model in which the explanatory variables are characteristics
of the choice alternatives, a similar model in which the explanatory variables are specific to the
choice situation (and constant across alternatives) is the multinomial logit model of Nerlove
and Press (1973). However, Maddala (1983) showed that the two models are equivalent and the
distinction between them is somewhat artificial (see also Greene (2003), page 720). Both types
of explanatory variable can be handled together within the same framework with appropriate
use of interactions (although the resulting model is sometimes called a mixed logit (ML) model,
we reserve this terminology for the hierarchical model that is discussed below). Within such
a framework, the model is often just called the multi-nomial logit (MNL) model (e.g. Haus-
man and McFadden (1984)), and we follow that lead here (see also the reference guide for the
NLOGIT software of Greene and Hensher (2002)).

The MNL model exhibits a property that is known as the independence of irrelevant alter-
natives (IIA) (Luce, 1959). For example, in a choice set containing two alternatives a and b,
the addition of a third alternative can have no effect on the ratio Pr.Y =a|xi/=Pr.Y =b|xi/. In
other words, the new alternative gains share proportionately from the choice shares of the exist-
ing alternatives in the set. There are contexts in which this property fails to describe observed
behaviour. For example, suppose that two soft drink beverages are available in a choice set:
one cola flavoured and the other lemon flavoured. The introduction of an alternative cola-
flavoured soft drink (with a different name but otherwise indistinguishable from the existing
cola) would most probably take most of its market share from the other cola rather than equally
from both existing drinks. However, in the Oscars application, it seems reasonable to assume
IIA, since nominees are unlikely to be considered close substitutes for one another. Exceptions
to this might be nominated movies of the same genre that are closer substitutes than those from
different genres or the relatively rare occasion when an individual receives multiple nominations
in a category in the same year. To date, this latter phenomenon has happened only three times
for Best Director (Clarence Brown in 1930, Michael Curtiz in 1938 and Steven Soderbergh in
2000); the Oscar rules prevent this from happening in the lead acting categories. IIA is also
supported by the manner in which the winner is selected (using plurality voting) as the nominee
who receives the most votes from all active and lifetime members of the AMPAS (see Gehrlein
and Hemant (2004)). To evaluate the IIA assumption empirically, we applied the IIA test of
Hausman and McFadden (1984) for the MNL model—results appear in Section 3.4.

An extension of the MNL model that places a probability distribution on some or all of the
parameters β in equation (1) is the ML model, which is also known as the random-parameters,
or random-coefficients or random-effects logit, or, from a Bayesian perspective, hierarchical
MNL (see Hensher and Greene (2003), Revelt and Train (1998), Rossi et al. (2005) and Train
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(2003)). (We use the ML terminology in this paper since it appears to be the most common in cur-
rent discrete choice literature.) The ML model generalizes equation (1) so that the parameters βi

are specific to choice experiment i and the (unconditional) probability of selecting alternative j
averages over a mixing distribution f.β/:

Pr.Y = j|xi/=
∫

exp.βT
i xij/∑

h∈Ci

exp.βT
i xih/

f.β/dβ: .2/

Two important features of the ML model in this context are that it does not require the IIA
assumption and it can approximate any random utility choice model to any degree of accuracy
through appropriate specification of f (McFadden and Train, 2000). However, Hensher and
Greene (2003), page 133, cautioned that ML models require ‘extremely high quality data if the
analyst wishes to take advantage of the extended capabilities of such models’. ML models are
often most successfully applied in situations where the choice experiments i are represented
by individuals making the choices, and either demographic data are available on the individ-
uals, or the individuals make repeated choices over a sequence of similar choice experiments
(i.e. panel data) or both. These additional data can facilitate estimation of the ML model by
providing additional information on the distribution of the individual parameters f.β/. In the
application that is considered in this paper, the ‘individuals making the choices’ are the Oscar
competitions for each category within each year, which have no repeated measurements (each
Oscar competition is essentially unique) and which have no obvious associated data equivalent
to demographics. Thus, for this particular application, it is not clear that an ML model will
necessarily outperform the MNL model (which is just a special case of the ML model with a
degenerate distribution for f ). Nevertheless, we compare the performance of both MNL and
ML models in Section 3.4 later.

MNL and ML models can be fitted with a variety of statistical software packages. We experi-
mented with two estimation methods: classical maximum likelihood by using NLOGIT (Greene
and Hensher, 2002) and Bayesian estimation by using WinBUGS (Spiegelhalter et al., 2003).
NLOGIT is one of the main software packages for MNL estimation by using maximum like-
lihood (Hensher and Greene, 2003), whereas WinBUGS uses Bayesian estimation techniques
that are based on Markov chain Monte Carlo simulation. Both packages are relatively easy to
use, although they do require some limited programming. Other software packages for discrete
choice modelling include the software language GAUSS (www.aptech.com) and the R pack-
age bayesm (Rossi et al., 2005), although currently bayesm requires the number of alternatives
in each choice set to be constant (which they are not for this application).

The R2WinBUGS functions of Sturtz et al. (2005) provide an interface between WinBUGS and
R (R Development Core Team, 2005) that facilitates processing of data and results (R2WinBUGS
is available as an R package at the Comprehensive R Archive Network (http://cran.r-
project.org). This is particularly useful in this application since 69 models are fitted (one
for each of the years 1938–2006). All data that were available before the announcement of the
1938 Oscars is used to fit a model which can predict the winners for that year. Then, the actual
outcome of the 1938 Oscars is appended to the previous data set and used to fit a new model
which can predict the winners of the 1939 Oscars. The process repeats, adding new variables as
they become available, up to the most recent Oscars in 2006.

The following sections compare the two estimation methods using NLOGIT and WinBUGS
for this application and also provide details on variable selection and model assessment. In the
same spirit as Train and Sonnier (2005), we employ methods and interpret our results from both
Bayesian and classical perspectives (see also Box (1980) and Rubin (1984)).
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3.1. Maximum likelihood estimation by using NLOGIT
NLOGIT obtains maximum likelihood estimates for the MNL model by using Newton’s method.
Greene and Hensher (2002) have provided details of how to carry out the specification test of
Hausman and McFadden (1984) to test the IIA assumption—results are in Section 3.4. We also
used the programming capabilities of NLOGIT to carry out the Lagrange multiplier test that
was proposed in McFadden and Train (2000) to determine whether mixing (of the MNL model)
is needed (i.e. do the data suggest that extension to an ML model might be beneficial?). Again,
results are in Section 3.4, which also contains some results for ML models; NLOGIT uses simu-
lated maximum likelihood estimation to fit ML models (which it calls random-parameters logit
models), with various distributions available for f (including normal, log-normal, uniform and
triangular).

3.2. Bayesian estimation by using WinBUGS
WinBUGS uses Markov chain Monte Carlo techniques, specifically Gibbs sampling (see Casella
and George (1992)) and the Metropolis–Hastings algorithm (see Chib and Greenberg (1995)),
to estimate statistical models. In contrast with NLOGIT, which has the MNL and ML models
‘built in’, the user must program WinBUGS to estimate these models. However, the program-
ming is relatively straightforward (for example, the MNL model that is used here is a mere 10 lines
of code), and it is easy to extend the models in non-standard ways (for example, the variations
for prior distributions and data weighting that are discussed below are relatively easy to carry
out in WinBUGS, whereas they are not possible with NLOGIT). WinBUGS code for the MNL
and ML models that are considered in this paper is available at http://lcb1.uoregon.
edu/ipardoe/research.htm.

Another potential difficulty of using Bayesian estimation here is specification of the prior dis-
tributions for the model parameters. For the MNL model (1), standard non-informative normal
priors for β (independent and centred at zero, with variance 10) produced stable results with
reasonable predictive accuracy. The results in Section 4 are based on the last halves of three
chains of 4000 simulations each (the first half of each chain—which was considered burn-in—
was discarded). Since the 0.975-quantiles of the corrected scale reduction factor (Brooks and
Gelman (1998), page 438) were each 1.1 or less, and trace plots showed good mixing of the three
chains, convergence to stationary posterior distributions (all unimodal) seems likely.

It is also possible to use more informative prior distributions for the MNL models in this
application. In particular, since 69 models are fitted, one after another, it is possible to use
normal approximations of the posterior distributions of β for the model fit to predict year
t as the prior distributions for the model fit to predict year t +1, and so on. Using such priors
produced equivalent, but not better, results to those by using the non-informative priors that
were discussed above.

The time series nature of the iterative estimation process also permits some modelling flexi-
bility. The process as described uses all previous data for predicting any particular year’s Oscars.
However, it is possible that more accurate models might be estimated if older data were down-
weighted in some way relatively to more recent data. One approach to doing this might be to
weight the data and to adjust the estimation process to take account of the weights in fitting the
model. Experiments with weighting schemes of this nature failed to improve predictive accu-
racy, however. An alternative method for downweighting older data is to use a moving window
approach whereby each model is fitted using just the previous N years of data. Setting N too
low (say 30) for this application produced less stable parameter estimates with correspond-
ingly worse predictions. Setting N too high (say using all previous data) might have produced
parameter estimates that remain overly affected by very early Oscar voting patterns. However,
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systematic experimentation with the moving window length N ultimately suggested using all
previous data.

Programming the ML model (2) in WinBUGS requires just a few extra lines of code to specify
the distribution for f and the ‘hyperprior’ distribution for the parameters of the f -distribution.
Any reasonable distribution can be used for f , although it is typically normal or log-normal.
Section 3.4 compares results for MNL and ML models fitted with both NLOGIT and Win-
BUGS.

3.3. Variable selection
As indicated in Section 2, the explanatory variables enter the models at various points be-
tween 1938 and 2006. The main restriction on when a variable enters a model is the earliest
date at which the variable is available. For example, since the first Golden Globes were for
1943 movies, the earliest that Golden Globe variables can be used is in the prediction of 1944
Oscars. However, variables were also omitted for years in which they provided little predic-
tive power and counterintuitive parameter estimates. For example, although a high number of
Oscar nominations generally improves the chance that a nominee will win a Best Picture or
Best Director Oscar, this association only became established for the directing Oscar from 1938
onwards.

The general modelling strategy follows the insight of Box (1979), page 202, that ‘all models
are wrong, but some are useful’. We do not claim that our final selected model uniquely repre-
sents the actual voting dynamics of AMPAS members during the Oscar season. Yet we do hope
that our modelling endeavours and results shed some light on interesting questions around the
predictability of the four major Oscar categories, and whether this can tell us anything useful
about the intent of the Oscars to recognize outstanding achievement in film. The approach that
is used to determine which variables are included and excluded for each model for each year is
based on standard regression modelling methodology such as that found in Weisberg (2005) or
Dielman (2005). For example, variables were initially selected that represent all the phenomena
that are used by Oscar prognosticators in the media (for which data are available). Given the
relatively sparse nature of the response data—one choice from a set of 5 (usually) for each cate-
gory over a limited time series—and the collinearity between some variables (e.g. Golden Globe
for Best Director and DGA awards), many variable effects are poorly estimated (with relatively
large standard errors). Such variables were then dropped from the model, although they could
re-enter a model later in the time series if their parameter estimates became sufficiently large
relative to their standard errors.

Although our approach was quite flexible in this regard (for example, we did not use a rigid
criterion such as 5% significance), we believe that our general modelling strategy compares rea-
sonably favourably for this application with a more formal econometric methodology such as
that of Spanos (1986). For example, Spanos noted the six most important criteria for model
selection as theory consistency, goodness of fit, predictive ability, robustness (including lack of
collinearity), encompassing other empirical studies or models and parsimony. Our approach
would appear to fare well with regard to these criteria. One remaining question is more prob-
lematic: are there any omitted variables that could be biasing the results, as might be revealed
through non-random systematic errors? There are undoubtedly factors at play in Oscar voting
dynamics that we fail to capture, such as studio advertising, temporal fads or trends, but there
is little evidence to suggest that their absence from the modelling process produces systematic
predictable errors. Residual analysis for logit models is notoriously challenging, but there is little
to suggest a serious problem from examining the residuals for the models that are considered
here (there might be scope for extending the graphical model checking ideas in Pardoe and
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Cook (2002) to consider this more extensively, but such an extension lies beyond the scope of
this paper).

3.4. Model assessment
Train (2003) recommended the likelihood ratio index to measure how well a discrete choice model
fits the data:

ρ=1− LL.β̂/

LL.0/
,

where LL.β̂/ is the value of the log-likelihood function at the estimated parameters and LL.0/

is its value when all the parameters are set equal to 0. This statistic is somewhat analogous to R2

in linear regression although it does not have the same ‘explained variation’ interpretation. To
illustrate, the value of ρ for the MNL model fitted by using NLOGIT to all the data up to 2006
is 0.47. The analogous quantity for the same model fitted by using WinBUGS is also 0.47 (as
noted in Section 3, to ease comparison of our maximum likelihood and Bayesian approaches
we follow Train and Sonnier (2005) by evaluating Bayesian results by using both Bayesian and
classical procedures).

The two sets of MNL model results (from NLOGIT and WinBUGS) are in fact very similar
(which is not too surprising given the relatively uninformative priors that are used for the Bayes-
ian approach). This begs the question, why use the more complicated Bayesian approach, when
the simpler likelihood approach using NLOGIT offers similar results? There are two reasons
why we prefer the Bayesian approach for this application.

(a) One extension which was discussed at the end of Section 3.2 (using informative priors
for year t + 1 based on results for year t) is only possible with the Bayesian approach
(although this extension ultimately failed to improve overall results).

(b) Although results for models fitted to data up to more recent times are similar under both
approaches, results for less recent times (when there were less data) diverged, sometimes
considerably. In particular, NLOGIT was sometimes unable to make use of certain vari-
ables until a number of years after WinBUGS could make use of the same variable. To
illustrate, DGA awards have been highly predictive of the Best Director Oscar since their
inception (in 1949) and WinBUGS estimates for the corresponding parameter stabilized
(with a relatively small standard error) from 1951 onwards. By contrast, NLOGIT esti-
mates for the same parameter are highly unstable (with huge standard errors) until 1969.
Consequently, WinBUGS can quite accurately predict Best Director Oscar winners over
the period 1951–1969, but NLOGIT is far less accurate, relying instead on basing pre-
dictions on the Golden Globe Best Director winner (which is less clearly associated with
the Best Director Oscar winner). WinBUGS can obtain stable estimates that NLOGIT
cannot because the Bayesian approach can be thought of as ‘shrinking’ the maximum
likelihood estimate towards the prior mean (0 in this case), particularly in early years
when the data do not (yet) dominate the prior.

We next considered the IIA assumption of the MNL model by conducting the specification
test of Hausman and McFadden (1984). For completeness, we again present results for both
NLOGIT and WinBUGS. The test works by re-estimating the model with a smaller set of choices
than in the complete data set; if IIA holds, results should be similar, and a statistic that is based
on differences in the model parameter estimates and covariance matrices allows significance to
be determined by using the χ2-distribution. In this application, we can restrict the choice set by
dropping one nominee in each year–category. Since the ordering of nominees within category
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contains no statistical information, we randomly selected one nominee to drop in each year–
category (dropping the entire year–category if the nominee dropped happened to be the winner).
To increase our confidence in the results, we conducted five such tests. For NLOGIT, p-values
for the five tests for the MNL model fitted to all the data up to 2006 were 0.57, 1.00, 0.15, 1.00
and 0.99. The analogous quantities by using WinBUGS were 0.56, 1.00, 0.70, 1.00 and 0.15
(the values of 1.00 actually corresponded to negative test statistics; Greene and Hensher (2002)
suggested that in such cases the right conclusion is probably that the test statistic should be
0). Both sets of results suggest that the IIA assumption seems reasonable for this application
(the values of 0.15 raise a slight question, so we investigate further by considering ML models
below).

Although these tests suggest that the MNL IIA assumption seems reasonable, the slight
question that is raised by the 0.15-value motivated us to investigate ML models in addition.
We applied the Lagrange multiplier test of McFadden and Train (2000) to determine whether
mixing (of the MNL model) is suggested. The test works by first creating artificial variables
that are based on squared deviations of explanatory variables from their weighted mean (the
weights being the MNL fitted probabilities). An MNL model including the artificial variables
can then be compared with the original MNL model by using a likelihood ratio test; if mixing
seems unnecessary, the artificial variables should have estimates that are close to 0 and the two
models should have a similar fit. Although the test is not designed to identify specifically which
variables might benefit from mixing, McFadden and Train (2000) used t-statistics exceeding 1 to
signal potential candidates for mixing in their example. For this application, the only variables
that come close to benefiting from mixing are the first two ‘front-running movie’ indicators that
cut across all four Oscar categories. For NLOGIT, including two artificial variables for these
two variables for the MNL model fitted to all the data up to 2006 produces t-statistics that both
(just) exceed 1, but the likelihood ratio test for their inclusion results in a p-value of 0.13. The
analogous value by using WinBUGS is 0.41 (with one t-statistic close to 1 but the other close to
0). The results suggest that the data do not particularly support extension of the MNL model
to an ML model.

A further check on whether the data support an ML model over the MNL model that is
sometimes applied is a standard likelihood ratio test comparison between the two models. The
most reasonable ML model based on extensive exploratory analysis has a multivariate normal
mixing distribution for the first two front-running movie indicator variables (we need to allow
for correlation since, in any particular year, a positive effect from being the first front-running
movie is likely to be coupled with a negative effect from being the second front-running movie,
and vice versa). For NLOGIT, the resulting p-value for models fitted to all the data up to 2006
is 0.48; the analogous value for WinBUGS is 0.34.

However, it is not clear that such a test is valid here since in the hierarchical ML model
the number of model parameters is ambiguous. These test results assume that the additional
number of parameters in the ML model is 3 (for two standard deviation parameters and one
correlation parameter). But, from an alternative viewpoint, there is one additional parameter for
each year–category for each front-running movie indicator variable (since each year–category
has its own separate front-running movie impacts estimated). From a Bayesian perspective, the
effective number of parameters lies somewhere in between and is calculated as twice the differ-
ence between the value of the (conditional) log-likelihood at the parameter posterior means
and the posterior mean of the (conditional) log-likelihood—see Spiegelhalter et al. (2002). The
deviance information criterion DIC is then minus twice the posterior mean of the (conditional)
log-likelihood (i.e. the posterior mean of the deviance) plus the effective number of parameters.
Given the difficulty in counting the number of parameters in Bayesian hierarchical models,
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Spiegelhalter et al. (2002) argued that the deviance information criterion is a more appropriate
measure of goodness of fit for such models than Akaike’s information criterion or the Bayesian
information criterion. For this application, the value of the deviance information criterion for
the WinBUGS MNL model fitted to all the data up to 2006 is 589, whereas for the comparable
ML model it is 536. In contrast with the previous results, this actually suggests that the ML
model does provide a better fit than the MNL model, even taking into account the additional
complexity of the ML model.

Despite the DIC results, it is possible that, although the ML model may provide a superior
fit within sample, the MNL model may prove more useful at predicting Oscar winners out of
sample. Train (2003) cautioned against assessing goodness of fit for discrete choice models by
using ‘per cent correctly predicted’. For the usual applications for discrete choice models, the
rationale is that

‘in stating choice probabilities, the researcher is saying that if the choice situation were repeated numer-
ous times (or faced by numerous people with the same attributes), each alternative would be chosen a
certain proportion of the time’

(Train (2003), page 73). This is not quite the same as predicting the choice alternative with
the highest fitted probability. However, in this application, the ‘alternatives chosen a certain
proportion of the time’ correspond to the proportion of votes that are cast by AMPAS mem-
bers for each nominee, and this is not really the focus of interest here (and, given the secret
nature of the ballot, this is something that will always be unknowable). Since the focus of
interest is rather the predictability of the single winner for each category in each year, it
seems more reasonable to use per cent correctly predicted as a goodness-of-fit criterion in
this context. Thus, to assess the predictive accuracy of the various modelling choices that
have just been described, one-year-ahead, out-of-sample errors were used. For example, the
four major Oscars winners for 1938 were predicted from a model fitted to data from 1928–
1937. Then, the winners for 1939 were predicted from a model fitted to data from 1928–1938,
and so on.

Using the modelling approach that was described in Section 3 for the MNL model in Win-
BUGS, 190 of the 276 Best Picture, Director, Actor and Actress Oscar winners from 1938 to 2006
were correctly identified, corresponding to an overall prediction accuracy of 69%. This compares
with 185 (67%) for the MNL model in NLOGIT and 186 (67%) for the ML model in WinBUGS.
The main reason for the reduced performance of the MNL model in NLOGIT appears to be
related to the inability of the estimation method to use some variables (e.g. DGA wins) early
in their history. The main reason for the reduced performance of the ML model in WinBUGS
appears to be related to the nature of the data in the context of the ML model. In particular, in
ML applications with repeated choices, it is possible to condition on an individual’s previous
choices to improve predictions of that individual’s future (out-of-sample) choices (Revelt and
Train, 2000). That is not possible here since each Oscar competition is essentially unique and
there are no repeated choices in this sense.

These results slightly favour the MNL model over the ML model, and also Bayesian estima-
tion using WinBUGS over maximum likelihood estimation using NLOGIT. This confirms most
of the earlier results comparing the various modelling methods (the only exception being the
deviance information criterion favouring the ML model). Since most of the model assessment
methods favour the MNL model in WinBUGS, and noting the advice of Hensher and Greene
(2003), page 171, that ‘regardless of what is said about advanced discrete choice models, the
MNL model should always be the starting point for empirical investigation’, we selected this as
our final modelling method.
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Fig. 1. 30-year moving averages of the proportion of correct predictions in each of the four major Oscar
categories: the moving average values are placed at the ends of the 30-year periods (for example, at the far
right-hand side of the graph the proportions of correct predictions over the period 1977–2006 are 93% for
Best Director, 77% for Best Actor, 77% for Best Actress and 70% for Best Picture)

With more data available in the later years, prediction accuracy has improved over time. For
example, the overall prediction accuracy for the last 30 years (1977–2006) is 95 correct predic-
tions out of 120, or 79%. Fig. 1 summarizes overall results across the four categories. Overall,
the Best Director Oscar has been the most predictable; then the Oscars for Best Picture (until
recently), Best Actor and Best Actress. Each of the categories has tended to become more pre-
dictable over time, particularly Best Actress, which was very difficult to predict until the early
1970s (see Simonton (2004c) for some discussion of the contrast between movies with Best Actor
and Best Actress nominations). The failure of the model to predict the Best Picture winner for
the last three years has led to a recent reversal in the predictability trend for this category.

4. Results

From the modelling process that was described in Section 3, the roles of the explanatory vari-
ables in helping to predict Oscar winners can change over time; Fig. 2 illustrates with LOWESS
smooths of posterior medians for the model parameters (we use medians here rather than means
since some posterior distributions were slightly positively skewed). The importance of receiv-
ing a Best Director nomination (for Best Picture nominees) of a Best Picture nomination (for
Best Director, Actor or Actress nominees) has tended to increase over time (except perhaps for
actors), as shown by the trends in the curves labelled ‘P’. Previous nominations appear to have
remained approximately equally important for Best Director nominees but were more impor-
tant for Best Actor nominees in the past than they have been more recently (curves labelled
‘N’). Previous wins seemed to hurt Best Actor nominees less in the 1960s and 1970s than in the
1940s and more recently, whereas previous wins have tended to become less important for Best
Actress nominees over time (curves labelled ‘W’).

The Golden Globes have remained useful predictors of future Oscar success since their incep-
tion. The changing fortunes of dramas (curves labelled ‘D’) and musicals and comedies (curves
labelled ‘M’) can be traced in Fig. 2, with musicals and comedies appearing to hold an advantage
over dramas in the 1960s with respect to Best Picture wins, but with acting wins tending to favour
dramas, particularly for males. Guild awards have clearly enabled quite accurate prediction of
Best Director winners, and to a lesser extent Best Picture winners (curves labelled ‘G’). Since
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Fig. 2. Smoothed parameter estimates—posterior medians—for the explanatory variable for each of the
four major Oscar categories (the explanatory variables are described in Section 2; T, total nominations;
P, director or picture; N, previous nominations; W, previous wins; D, Globe drama; M, Globe musical or
comedy; G, Guild award): (a) picture; (b) director; (c) actor; (d) actress

they have had a much shorter history, it is not clear whether Screen Actor’s Guild awards will
be just as helpful in predicting acting wins, although early indications suggest so.

The effect of the total number of Oscar nominations (curves labelled ‘T’) on prediction of the
Best Picture and Best Director Oscars remains reasonably steady. Since the number of nomin-
ations that a movie can receive has ranged in the past between 1 and 14, this variable is more
influential than it appears to be in the graphs (which show the effects of the number of nomin-
ations increasing by 1). The effects of the ‘front-runner’ variables—which cut across all four
categories—are not shown in Fig. 2 (they appear less important than the other variables, with
smaller magnitude estimates and larger standard errors).

The analysis also reveals which past nominees have really upset the odds (winners with low
estimated probability of winning), and which appear to have been truly robbed (losers with
high estimated probability of winning). Table 2 provides details of the three ‘most surprising’
outcomes in each category (based on the model results). A complete listing of the results is
available at the Web site lcb1.uoregon.edu/ipardoe/oscars/ (which will be updated
with future predictions in February of each year).
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Table 2. Three outcomes in each of the major categories with the smallest estimated win
probabilities for the actual winner relative to the predicted winner

Year Winner Probability Predicted winner Probability

Best Picture
1948 Hamlet 0.01 Johnny Belinda 0.97
2004 Million Dollar Baby 0.01 The Aviator 0.97
1981 Chariots of Fire 0.01 Reds 0.88

Best Director
2000 Steven Soderbergh 0.01 Ang Lee 0.95
1968 Carol Reed 0.02 Anthony Harvey 0.97
1972 Bob Fosse 0.03 Francis Ford Coppola 0.96

Best Actor
2001 Denzel Washington 0.00 Russell Crowe 0.99
1968 Cliff Robertson 0.00 Peter O’Toole 0.88
1974 Art Carney 0.02 Jack Nicholson 0.87

Best Actress
2002 Nicole Kidman 0.07 Renée Zellweger 0.90
1985 Geraldine Page 0.07 Whoopi Goldberg 0.70
1950 Judy Holliday 0.09 Gloria Swanson 0.76

5. Discussion

Discrete choice modelling of past data on Oscar nominees in the four major categories—Best
Picture, Director, Actor and Actress—enables prediction of the winners in these categories with
a surprisingly high degree of success. If recent trends persist, it should be possible to predict
future winners with a prediction success rate of approximately 70% for picture, 93% for director,
77% for actor and 77% for actress. Interestingly, although predictive accuracy has been largely
increasing (Fig. 1), the parameter estimates for predictors often exhibit non-monotonic trends
(Fig. 2). Hence, the results indicate that the dynamics are more complicated than would be
expected if it were a simple matter of the Academy voters slowly converging on the assessments
underlying the Golden Globes and Guild awards. The findings also imply a greater complexity
in the process underlying the distribution of the awards across films than suggested by cumula-
tive advantage effects that are produced by opinion diffusion models (see, for example, Collins
and Hand (2006)).

It is also noteworthy that the historical changes in these parameters do not display the same
trajectories for the four categories. Most strikingly, the Best Actor and Best Actress categories
not only have different predictors, and different parameter estimates for the predictors that they
share, but also the changes in the parameter estimates do not always follow the same trend (e.g.
the effect of previous wins). Such differences may eventually provide an explanation for gender
differences in the degree that acting awards or nominations (whether lead or supporting) are
coupled with a Best Picture award or nomination (Simonton, 2004c).

As pointed out by a referee, predictive modelling of Oscar outcomes is an example of a
‘beauty contest’ (in the parlance of information economics and game theory). The object is not
to choose who should win, but to predict the behaviour of Academy voters (i.e. to choose who
will win). Media prognosticators often make the same distinction and offer their readers or
viewers two such lists of Oscar predictions. Our focus on who will win informs our modelling
strategy (e.g. select those variables that have historically been most likely to provide accurate
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predictions), and also helps to shed some light on when certain Oscar categories seem to go
awry (e.g. mismatches between who will win and who should win). We discuss this latter point
in more detail below (see also Table 2).

Nevertheless, parameter estimates are generally consistent with commonly held views about
the Oscars. Heavily nominated films with complementary Best Picture and Best Director nom-
inations tend to do well, and nominees with previous Golden Globe or Guild awards are also
favoured. To the extent that the corresponding predictors reflect some measure of merit, the
Oscar process would seem to be meeting its goal of recognizing outstanding achievement in
film. Further, the results support the notion that previous Oscar nominations benefit directors
and actors, whereas previous Oscar wins reduce the chance that an actor or actress will win
again. However, the actual merit of an acting performance should probably not be contingent
on how many times an individual was nominated in the past or on how many times he or she
has won the award before. This would seem to indicate that the directing and lead acting Oscars
may be as reflective of achievement over a lifetime as much as achievement for a particular film.
Finally, actors and actresses who are nominated for performances in heavily nominated films
(particularly those with a Best Picture nomination) do indeed fare better than their peers in less
highly acclaimed films. Again, this observation might seem to be at odds with a purely objective
assessment of the quality of an acting performance.

The results also help us to assess those occasions when the Oscars fail to be awarded in a
manner that is consistent with true merit. For example, there has been much media specula-
tion about legendary individuals who have never won an Oscar, such as Alfred Hitchcock with
five directing nominations, Peter O’Toole with eight lead actor nominations, Richard Burton
with six lead actor nominations and Deborah Kerr with six lead actress nominations. Accord-
ing to the predictions, the unluckiest was probably O’Toole who came closest to winning in
1968 (with an 89% modelled probability of winning) and 1964 (with 83% probability). Kerr
came close in 1956 (with 72% probability), as did Burton in 1977 (with 62% probability), and
Hitchcock’s nearest miss was for Rebecca in 1940 (with 42% probability). In some instances
the Academy decided to make corrections for various inadvertent false negative results. In
particular, Hitchcock, Kerr and O’Toole were eventually awarded honorary Oscars as compen-
sation.

To be sure, sometimes the errors of prediction may be too great, making the Oscars look
worse than they really deserve. Although many were surprised when Denzel Washington won
over Russell Crowe in the 2001 Oscar race for Best Actor, the surprise may not be nearly as
extreme as implied by the model predictions in Table 2. Another example is the failure of Broke-
back Mountain to win Best Picture for 2005 after winning both Golden Globe and Producers
Guild of America awards. Nevertheless, the surprise of Crash winning instead was not as great
as that implied by the model predictions of 0.03 probability for Crash versus 0.90 probability
for Brokeback Mountain. Clearly, the model was unable to make use of the late surge that Crash
made and the apparent backlash against Brokeback Mountain (in unquantifiable ‘Hollywood
buzz’ terms) as the Oscar ceremony drew near. In so far as such intangibles confound the Oscar
outcomes, complete predictive precision is probably unattainable. Nonetheless, it is also con-
ceivable that the addition of new predictors can reduce the number and magnitude of observed
errors. In addition, it would be instructive to extend the analyses that were described in this
paper to other Oscar categories, such as the supporting acting and screenwriting awards.

However, future research on this question should not just focus on empirical prediction. In
the long run, theoretical explanation would be no less important. For instance, it would be
important to identify any causal process that underlies the various awards. Previous research
has suggested two alternative kinds of process (Simonton, 1991). On the one hand, the various
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award measures for a given category could be the consequence of a single underlying factor
or latent variable that indicates the actual relative merit of the pictures, directors, actors and
actresses. The Oscar awards and nominations would then be a function of this latent factor
plus some random-shock or error term (sympathy votes, current events, etc.). On the other
hand, the diverse awards may reflect a more dynamic process—which is a reasonable hypoth-
esis given that the award ceremonies are not all on the same day. Because the Oscars are the
last awards that are bestowed in a given year, the Academy voters may benefit in a substantial
way from previous awards and nominations, or even by rumours of awards and nominations.
According to this model, the merit of a picture, director, actor or actress is not a stable attri-
bute behind all awards, but rather a transient assessment that evolves over time. Although
prior empirical investigations have supported the former, single-factor, model over the lat-
ter, auto-regressive, model, these two theoretical accounts have not yet been tested for movie
awards.

Improving both prediction and explanation may prove more valuable than just satisfying our
intellectual curiosity of a highly visible event. Conceivably, predictive and explanatory models
can indicate the specific ways that the Oscars can go wrong. This knowledge might lead to
recommendations about how to improve the Academy’s selection and voting process. Even if
the Academy were unwilling or unable to introduce the necessary improvements, these predic-
tion methods can provide a useful antidote to the dramatic announcements of Oscar night.
In particular, the discrete choice models can help filmmakers and moviegoers alike to assess
how much faith they can place in the identity of the ‘best’ picture, director, actor or actress.
To what extent does a given award reflect the merits of the actual cinematic performance rather
than represent less relevant processes operating among Academy voters? Given the tremen-
dous consequences of taking an Oscar home, these results would have far more than academic
interest.
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