Applied Regression Modeling: A Business Approach
Chapter 2: Simple Linear Regression
Sections 2.4–2.7

by Iain Pardoe
Regression model assumptions

Four assumptions about random errors,
\[e = Y - \mathbb{E}(Y) = Y - b_0 - b_1 X: \]
Four assumptions about random errors, $e = Y - \text{E}(Y) = Y - b_0 - b_1X$:

- Probability distribution of e at each value of X has a **mean of zero**;
Four assumptions about random errors,
\[e = Y - \text{E}(Y) = Y - b_0 - b_1 X: \]

- Probability distribution of \(e \) at each value of \(X \) has a **mean of zero**;
- Probability distribution of \(e \) at each value of \(X \) has **constant variance**;
Four assumptions about random errors,
\[e = Y - \mathbb{E}(Y) = Y - b_0 - b_1 X: \]

- Probability distribution of \(e \) at each value of \(X \) has a **mean of zero**;
- Probability distribution of \(e \) at each value of \(X \) has **constant variance**;
- Probability distribution of \(e \) at each value of \(X \) is **normal**;
Four assumptions about random errors,
\[e = Y - \mathbb{E}(Y) = Y - b_0 - b_1 X: \]

- Probability distribution of \(e \) at each value of \(X \) has a **mean of zero**;
- Probability distribution of \(e \) at each value of \(X \) has **constant variance**;
- Probability distribution of \(e \) at each value of \(X \) is **normal**;
- Value of \(e \) for one observation is **independent** of the value of \(e \) for any other observation.
Viewing the assumptions on a scatterplot

Random error probability distributions.

\[E(Y) = b_0 + b_1X \]
Checking the model assumptions

- Calculate residuals, $\hat{e} = Y - \hat{Y} = Y - \hat{b}_0 - \hat{b}_1 X$.
- Draw a residual plot with \hat{e} along the vertical axis and X along the horizontal axis.
Checking the model assumptions

2.4 Model assumptions
- Regression model assumptions
- Viewing the assumptions on a scatterplot

Checking the model assumptions
- Residual plots which pass
- Residual plots which fail
- Histograms of residuals
- QQ-plots of residuals
- Assessing assumptions in practice

2.5 Model interpretation

2.6 Estimation and prediction

2.7 Chapter summary

• Calculate residuals, \(\hat{e} = Y - \hat{Y} = Y - \hat{b}_0 - \hat{b}_1 X \).
• Draw a residual plot with \(\hat{e} \) along the vertical axis and \(X \) along the horizontal axis.
 - Assess **zero mean** assumption—do the residuals average out to zero as we move across the plot from left to right?
• Calculate residuals, \(\hat{e} = Y - \hat{Y} = Y - \hat{b}_0 - \hat{b}_1X \).
• Draw a residual plot with \(\hat{e} \) along the vertical axis and \(X \) along the horizontal axis.
 - Assess **zero mean** assumption—do the residuals average out to zero as we move across the plot from left to right?
 - Assess **constant variance** assumption—is the (vertical) variation of the residuals similar as we move across the plot from left to right?
Checking the model assumptions

2.4 Model assumptions
Regression model assumptions
Viewing the assumptions on a scatterplot

Checking the model assumptions
Residual plots which pass
Residual plots which fail
Histograms of residuals
QQ-plots of residuals
Assessing assumptions in practice

2.5 Model interpretation

2.6 Estimation and prediction

2.7 Chapter summary

- Calculate residuals, \(\hat{e} = Y - \hat{Y} = Y - \hat{b}_0 - \hat{b}_1 X \).
- Draw a residual plot with \(\hat{e} \) along the vertical axis and \(X \) along the horizontal axis.
 - Assess **zero mean** assumption—do the residuals average out to zero as we move across the plot from left to right?
 - Assess **constant variance** assumption—is the (vertical) variation of the residuals similar as we move across the plot from left to right?
 - Assess **independence** assumption—do residuals look “random” with no systematic patterns?
Checking the model assumptions

- Calculate residuals, \(\hat{e} = Y - \hat{Y} = Y - \hat{b}_0 - \hat{b}_1 X \).
- Draw a residual plot with \(\hat{e} \) along the vertical axis and \(X \) along the horizontal axis.
 - Assess **zero mean** assumption—do the residuals average out to zero as we move across the plot from left to right?
 - Assess **constant variance** assumption—is the (vertical) variation of the residuals similar as we move across the plot from left to right?
 - Assess **independence** assumption—do residuals look “random” with no systematic patterns?
- Draw a histogram and QQ-plot of the residuals.
Checking the model assumptions

2.4 Model assumptions
Regression model assumptions
Viewing the assumptions on a scatterplot

Calculating the model assumptions

Residual plots which pass
Residual plots which fail
Histograms of residuals
QQ-plots of residuals
Assessing assumptions in practice

2.5 Model interpretation

2.6 Estimation and prediction

2.7 Chapter summary

• Calculate residuals, \(\hat{e} = Y - \hat{Y} = Y - \hat{b}_0 - \hat{b}_1 X \).
• Draw a residual plot with \(\hat{e} \) along the vertical axis and \(X \) along the horizontal axis.
 o Assess zero mean assumption—do the residuals average out to zero as we move across the plot from left to right?
 o Assess constant variance assumption—is the (vertical) variation of the residuals similar as we move across the plot from left to right?
 o Assess independence assumption—do residuals look “random” with no systematic patterns?
• Draw a histogram and QQ-plot of the residuals.
 o Assess normality assumption—does histogram look approximately bell-shaped and symmetric and do QQ-plot points lie close to line?
Residual plots which pass
Residual plots which fail

2.4 Model assumptions
Regression model assumptions
Viewing the assumptions on a scatterplot
Checking the model assumptions
Residual plots which pass
Residual plots which fail
Histograms of residuals
QQ-plots of residuals
Assessing assumptions in practice

2.5 Model interpretation

2.6 Estimation and prediction

2.7 Chapter summary

© Iain Pardoe, 2006
2.4 Model assumptions
Regression model assumptions
Viewing the assumptions on a scatterplot
Checking the model assumptions
Residual plots which pass
Residual plots which fail

Histograms of residuals
QQ-plots of residuals
Assessing assumptions in practice

2.5 Model interpretation

2.6 Estimation and prediction

2.7 Chapter summary

© Iain Pardoe, 2006
Upper three pass, lower three fail

QQ-plots of residuals

Assessing assumptions in practice
Assessing assumptions in practice can be difficult and time-consuming.

Taking the time to check the assumptions is worthwhile and can provide additional support for any modeling conclusions.

Clear violation of one or more assumptions could mean results are questionable and should probably not be used (possible remedies to come in Chapters 3 and 4).

Regression results tend to be quite robust to mild violations of assumptions.

Checking assumptions when \(n \) is very small (or very large) can be particularly challenging.

Example: CARS2 data file—is weight or horsepower better for predicting cost?
Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>Multiple R</th>
<th>R^2</th>
<th>Adjusted R^2</th>
<th>Std. Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.972^{a}</td>
<td>0.945</td>
<td>0.927</td>
<td>2.7865</td>
</tr>
</tbody>
</table>

*a Predictors: (Intercept), X.

Parameters a

| Model | Estimate | Std. Error | t-stat | Pr(>|t|) |
|-------|----------|------------|--------|----------|
| 1 (Intercept) | 190.318 | 11.023 | 17.266 | 0.000 |
| X | 40.800 | 5.684 | 7.179 | 0.006 |

95% Confidence Interval

<table>
<thead>
<tr>
<th>Model</th>
<th>Lower Bound</th>
<th>Upper Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Intercept)</td>
<td>155.238</td>
<td>225.398</td>
</tr>
<tr>
<td>X</td>
<td>22.712</td>
<td>58.888</td>
</tr>
</tbody>
</table>

*a Response variable: Y.

© Iain Pardoe, 2006
Interpreting model results

- We found a statistically significant straight-line relationship (at a 5% significance level) between $Y = \text{sale price ($k)}$ and $X = \text{floor size (k sq. feet)}$.
We found a statistically significant straight-line relationship (at a 5% significance level) between $Y =$ sale price (k) and $X =$ floor size (k sq. feet).

Estimated equation: $\hat{Y} = \hat{b}_0 + \hat{b}_1 X = 190.3 + 40.8X$.
Interpreting model results

- We found a statistically significant straight-line relationship (at a 5% significance level) between $Y =$ sale price (k) and $X =$ floor size (k sq. feet).

- Estimated equation: $\hat{Y} = \hat{b}_0 + \hat{b}_1 X = 190.3 + 40.8 X$.

- $X = 0$ does not make sense for this application, nor do we have data close to $X = 0$, so we cannot meaningfully interpret $\hat{b}_0 = 190.3$.
• We found a statistically significant straight-line relationship (at a 5% significance level) between \(Y = \text{sale price ($k)} \) and \(X = \text{floor size (k sq. feet)} \).

• Estimated equation: \(\hat{Y} = \hat{b}_0 + \hat{b}_1 X = 190.3 + 40.8X \).

• \(X = 0 \) does not make sense for this application, nor do we have data close to \(X = 0 \), so we cannot meaningfully interpret \(\hat{b}_0 = 190.3 \).

• Expect sale price to increase $4080 when floor size increases 100 sq. feet, for 1683–2269 sq. feet homes (95% confident sale price increases between $2270 and $5890 when floor size increases 100 sq. feet).
We found a statistically significant straight-line relationship (at a 5% significance level) between Y = sale price (k) and X = floor size (k sq. feet).

Estimated equation: $\hat{Y} = \hat{b}_0 + \hat{b}_1 X = 190.3 + 40.8X$.

$X = 0$ does not make sense for this application, nor do we have data close to $X = 0$, so we cannot meaningfully interpret $\hat{b}_0 = 190.3$.

Expect sale price to increase 4080 when floor size increases 100 sq. feet, for 1683–2269 sq. feet homes (95% confident sale price increases between 2270 and 5890 when floor size increases 100 sq. feet).

Can expect a prediction of an unobserved sale price from a particular floor size to be accurate to within approximately ± 5570 (with 95% confidence).
We found a statistically significant straight-line relationship (at a 5% significance level) between $Y =$ sale price (k) and $X =$ floor size (k sq. feet).

- Estimated equation: $\hat{Y} = \hat{b}_0 + \hat{b}_1 X = 190.3 + 40.8X$.
- $X = 0$ does not make sense for this application, nor do we have data close to $X = 0$, so we cannot meaningfully interpret $\hat{b}_0 = 190.3$.
- Expect sale price to increase $\4080$ when floor size increases 100 sq. feet, for 1683–2269 sq. feet homes (95% confident sale price increases between $\2270$ and $\5890$ when floor size increases 100 sq. feet).
- Can expect a prediction of an unobserved sale price from a particular floor size to be accurate to within approximately ± 5570 (with 95% confidence).
- 94.5% of the variation in sale price (about its mean) can be explained by a straight-line relationship between sale price and floor size.
Simple linear regression model.

\[\hat{Y} = 190.3 + 40.8X \]

- \(X \): floor size (in thousands of square feet)
- \(Y \): sale price (in thousands of dollars)
Estimation and prediction

- Recall the confidence interval for a univariate population mean, $E(Y)$:
 \[m_Y \pm t\text{-percentile}(s_Y / \sqrt{n}). \]
- Also, a prediction interval for an individual univariate Y-value:
 \[m_Y \pm t\text{-percentile} \left(s_Y \sqrt{1+1/n} \right). \]
• Recall the confidence interval for a univariate population mean, $E(Y)$:
 $m_Y \pm t\text{-percentile}\left(\frac{s_Y}{\sqrt{n}}\right)$.
• Also, a prediction interval for an individual univariate Y-value:
 $m_Y \pm t\text{-percentile}\left(\frac{s_Y}{\sqrt{1+1/n}}\right)$.
• Similar distinction between confidence and prediction intervals for simple linear regression.
• Confidence interval for the population mean, $E(Y)$, at a particular X-value is $\hat{Y} \pm t\text{-percentile}(s_{\hat{Y}})$.
• Prediction interval for an individual Y-value at a particular X-value is $\hat{Y}^* \pm t\text{-percentile}(s_{\hat{Y}^*})$.
Estimation and prediction

- Recall the confidence interval for a univariate population mean, $E(Y)$:

 $$m_Y \pm t\text{-percentile}\left(\frac{s_Y}{\sqrt{n}}\right).$$

- Also, a prediction interval for an individual univariate Y-value:

 $$m_Y \pm t\text{-percentile}\left(\frac{s_Y}{\sqrt{1+1/n}}\right).$$

- Similar distinction between confidence and prediction intervals for simple linear regression.

- Confidence interval for the population mean, $E(Y)$, at a particular X-value is $\hat{Y} \pm t\text{-percentile}(s_{\hat{Y}})$.

- Prediction interval for an individual Y-value at a particular X-value is $\hat{Y}^* \pm t\text{-percentile}(s_{\hat{Y}^*})$.

- Which should be wider? Is it harder to estimate a mean or predict an individual value?
Confidence interval for population mean, \(E(Y) \)

- Formula: \(\hat{Y} \pm t\text{-percentile}(s_\hat{Y}) \)
 where \(s_\hat{Y} = s \sqrt{\frac{1}{n} + \frac{(X_p - m_X)^2}{\sum_{i=1}^{n}(X_i - m_X)^2}} \).

- Interval is narrower:
 - when \(n \) is large;
 - when \(X_p \) is close to its sample mean, \(m_X \);
 - when the regression standard error, \(s \), is small;
 - for lower levels of confidence.
2.4 Model assumptions

2.5 Model interpretation

2.6 Estimation and prediction

2.7 Chapter summary

Confidence interval for population mean, E(\(Y\))

- Formula: \(\hat{Y} \pm t\text{-percentile}(s_{\hat{Y}})\)

 where \(s_{\hat{Y}} = s\sqrt{\frac{1}{n} + \frac{(X_p-m_X)^2}{\sum_{i=1}^{n}(X_i-m_X)^2}}\).

- Interval is narrower:
 - when \(n\) is large;
 - when \(X_p\) is close to its sample mean, \(m_X\);
 - when the regression standard error, \(s\), is small;
 - for lower levels of confidence.

- Example: for home prices–floor size dataset, the 95% confidence interval for \(E(Y)\) when \(X = 2\) is \((267.7, 276.1)\).

- Interpretation: we’re 95% confident that average sale price is between $267,700 and $276,100 for 2000 square foot homes.

© Iain Pardoe, 2006
Prediction interval for an individual Y-value

- Formula: \(\hat{Y}^* \pm t\text{-percentile}(s_{\hat{Y}^*}) \)
 where \(s_{\hat{Y}^*} = s \sqrt{1 + \frac{1}{n} + \frac{(X_p - m_X)^2}{\sum_{i=1}^{n}(X_i - m_X)^2}} \).

- Interval is narrower:
 - when \(n \) is large;
 - when \(X_p \) is close to its sample mean, \(m_X \);
 - when the regression standard error, \(s \), is small;
 - for lower levels of confidence.
Prediction interval for an individual Y-value

- Formula: \(\hat{Y}^* \pm t\text{-percentile}(s_{\hat{Y}^*}) \)

 where \(s_{\hat{Y}^*} = s \sqrt{1 + \frac{1}{n} + \frac{(X_p - m_X)^2}{\sum_{i=1}^{n}(X_i - m_X)^2}} \).

- Interval is narrower:
 - when \(n \) is large;
 - when \(X_p \) is close to its sample mean, \(m_X \);
 - when the regression standard error, \(s \), is small;
 - for lower levels of confidence.

- Since \(s_{\hat{Y}^*} > s_{\hat{Y}} \), prediction interval is wider than confidence interval.
Prediction interval for an individual Y-value

- Formula: $\hat{Y}^* \pm t\text{-percentile}(s_{\hat{Y}^*})$

 where $s_{\hat{Y}^*} = s\sqrt{1 + \frac{1}{n} + \frac{(X_p - m_X)^2}{\sum_{i=1}^{n}(X_i - m_X)^2}}$.

- Interval is narrower:
 - when n is large;
 - when X_p is close to its sample mean, m_X;
 - when the regression standard error, s, is small;
 - for lower levels of confidence.

- Since $s_{\hat{Y}^*} > s_{\hat{Y}}$, prediction interval is wider than confidence interval.

- Example: home prices–floor size dataset, the 95% prediction interval for Y^* at $X = 2$ is (262.1, 281.7).

- Interpretation: we’re 95% confident that the sale price for an individual 2000 square foot home is between $262,100 and $281,700.
Prediction interval for an individual Y-value

- **Formula:** \(\hat{Y}^* \pm t\text{-percentile}(s_{\hat{Y}^*}) \)

 where \(s_{\hat{Y}^*} = s \sqrt{1 + \frac{1}{n} + \frac{(X_p - m_X)^2}{\sum_{i=1}^{n}(X_i - m_X)^2}} \).

- **Interval is narrower:**
 - when \(n \) is large;
 - when \(X_p \) is close to its sample mean, \(m_X \);
 - when the regression standard error, \(s \), is small;
 - for lower levels of confidence.

- **Since** \(s_{\hat{Y}^*} > s_{\hat{Y}} \), prediction interval is wider than confidence interval.

- **Example:** home prices–floor size dataset, the 95% prediction interval for \(Y^* \) at \(X = 2 \) is (262.1, 281.7).

- **Interpretation:** we’re 95% confident that the sale price for an individual 2000 square foot home is between $262,100 and $281,700.

- **What is a 95% prediction interval for large \(n \)?**
Compare widths of confidence and prediction intervals.

\[E(Y) = b_0 + b_1 X \]

Confidence and prediction intervals.
Steps in a simple linear regression analysis

- Formulate model.
Steps in a simple linear regression analysis

- Formulate model.
- Construct a scatterplot of Y versus X.
Steps in a simple linear regression analysis

- Formulate model.
- Construct a scatterplot of Y versus X.
- Estimate model using least squares.
Steps in a simple linear regression analysis

- Formulate model.
- Construct a scatterplot of Y versus X.
- Estimate model using least squares.
- Evaluate model:
 - Regression standard error, s;
 - Coefficient of determination, R^2;
 - Population slope, b_1.
Steps in a simple linear regression analysis

- Formulate model.
- Construct a scatterplot of Y versus X.
- Estimate model using least squares.
- Evaluate model:
 - Regression standard error, s;
 - Coefficient of determination, R^2;
 - Population slope, b_1.
- Check model assumptions.
Steps in a simple linear regression analysis

- Formulate model.
- Construct a scatterplot of Y versus X.
- Estimate model using least squares.
- Evaluate model:
 - Regression standard error, s;
 - Coefficient of determination, R^2;
 - Population slope, b_1.
- Check model assumptions.
- Interpret model.
Steps in a simple linear regression analysis

- Formulate model.
- Construct a scatterplot of Y versus X.
- Estimate model using least squares.
- Evaluate model:
 - Regression standard error, s;
 - Coefficient of determination, R^2;
 - Population slope, b_1.
- Check model assumptions.
- Interpret model.
- Estimate $E(Y)$ and predict Y.