Applied Regression Modeling: A Business Approach
Chapter 1: Foundations
Sections 1.5–1.7

by Iain Pardoe
• Goal: estimate the population mean $E(Y)$.
• Best point estimate: the sample mean m_Y.
• How far off might we be? Can we quantify our uncertainty?
• Confidence interval: point estimate \pm uncertainty.
• Example: 80% confidence interval for $E(Y)$ in home prices application is $278.603 \pm 12.893 = (265.710, 291.496)$.
• In other words, based on this dataset, we are 80% confident that the population mean home price is between $266,000 and $291,000.
• This leaves quite a bit of room for error (20%), so 90% and 95% intervals are more common.
• Question: will a 90% interval be narrower or wider than the 80% interval?
Example: 80% confidence interval.

Pr \((-90^{th} \text{ percentile} < t_{n-1} < 90^{th} \text{ percentile}) = 0.80\)

where the 90^{th} percentile comes from t_{n-1} (t-distribution with $n-1$ df).

Question: why does an 80\% interval require 90^{th} percentiles? (draw a picture)
Confidence interval for $E(Y)$

- **Example:** 80% confidence interval.
- $\Pr(-90^{th} \text{ percentile} < t_{n-1} < 90^{th} \text{ percentile}) = 0.80$ where the 90th percentile comes from t_{n-1} (t-distribution with $n-1$ df).
- **Question:** why does an 80% interval require 90th percentiles? (draw a picture)
- **Next step:** plug in $t_{n-1} = \frac{m_Y - E(Y)}{s_Y / \sqrt{n}}$.
- **Algebra**
Confidence interval for $E(Y)$

- Example: 80% confidence interval.
- $\Pr \left(-90^{th} \text{ percentile} < t_{n-1} < 90^{th} \text{ percentile} \right) = 0.80$ where the 90th percentile comes from t_{n-1} (t-distribution with $n-1$ df).
- Question: why does an 80% interval require 90th percentiles? (draw a picture)
- Next step: plug in $t_{n-1} = \frac{m_Y - E(Y)}{s_Y/\sqrt{n}}$.
- Algebra . . .
- $\Pr \left(m_Y - 90^{th} \text{ percentile} \left(\frac{s_Y}{\sqrt{n}} \right) < E(Y) < m_Y + 90^{th} \text{ percentile} \left(\frac{s_Y}{\sqrt{n}} \right) \right) = 0.80$.
- In other words, the 80% confidence interval can be written $m_Y \pm 90^{th} \text{ percentile} \left(\frac{s_Y}{\sqrt{n}} \right)$.
- Question: what is the formula for a 90% interval?
Example: home prices Y_1, \ldots, Y_{30}.
- Sample mean, m_Y, is 278.603.
- Sample standard deviation, s_Y, is 53.8656.
- Calculate an 80% confidence interval for $E(Y)$.
Calculating confidence intervals

- Example: home prices \(Y_1, \ldots, Y_{30} \).
- Sample mean, \(m_Y \), is 278.603.
- Sample standard deviation, \(s_Y \), is 53.8656.
- Calculate an 80\% confidence interval for \(E(Y) \).
- 90th percentile of \(t_{29} \) is 1.311.
Calculating confidence intervals

- Example: home prices \(Y_1, \ldots, Y_{30} \).
- Sample mean, \(m_Y \), is 278.603.
- Sample standard deviation, \(s_Y \), is 53.8656.
- Calculate an 80% confidence interval for \(E(Y) \).
- 90th percentile of \(t_{29} \) is 1.311.
- \(m_Y \pm 90th \) percentile \((s_Y / \sqrt{n}) = 278.603 \pm 1.311(53.8656/\sqrt{30}) = 278.603 \pm 12.893 = (265.710, 291.496) \).
Calculating confidence intervals

- Example: home prices Y_1, \ldots, Y_{30}.
- Sample mean, m_Y, is 278.603.
- Sample standard deviation, s_Y, is 53.8656.
- Calculate an 80% confidence interval for $E(Y)$.
 - 90th percentile of t_{29} is 1.311.
 - $m_Y \pm 90^{th}$ percentile $\left(\frac{s_Y}{\sqrt{n}} \right) = 278.603 \pm 1.311 \left(\frac{53.8656}{\sqrt{30}} \right) = 278.603 \pm 12.893 = (265.710, 291.496)$.
- Calculate a 90% confidence interval for $E(Y)$.
• Loosely speaking: based on this dataset, we are 80% confident that the population mean home price is between $266,000 and $291,000.

• More precisely: If we were to take a large number of random samples of size 30 from a population of sale prices and calculate an 80% confidence interval for each, then 80% of those confidence intervals would contain the (unknown) population mean.

• E.g., 10 confidence intervals for samples from a population with $E(Y)$ marked by the vertical line:

 • 8 of the intervals contain $E(Y)$, while 2 don’t.
1.5 Interval estimation

1.6 Hypothesis testing

Hypothesis testing

- Confidence intervals tell us a range of plausible values for $\mathbb{E}(Y)$ with a specified confidence level.
- By contrast, hypothesis tests ask whether a particular value is plausible or not.
- Example: does a population mean of $255,000 seem plausible given our sample of 30 home prices?
Hypothesis testing

- Confidence intervals tell us a range of plausible values for $E(Y)$ with a specified confidence level.
- By contrast, hypothesis tests ask whether a particular value is plausible or not.
- Example: does a population mean of $255,000 seem plausible given our sample of 30 home prices?
 - Upper-tail test: can we reject the possibility that $E(Y) = 255$ in favor of $E(Y) > 255$?
Hypothesis testing

1.5 Interval estimation

1.6 Hypothesis testing

Hypothesis testing

The rejection region method
Rejection region example
Hypothesis test for home prices example

The p-value method
P-value example
Hypothesis test for home prices example
One-tail hypothesis tests
One-tail hypothesis tests
One-tail hypothesis tests
One-tail hypothesis tests
Two-tail hypothesis tests
Two-tail hypothesis tests
Two-tail hypothesis tests
Hypothesis test errors

1.7 Random errors and prediction

Confidence intervals tell us a range of plausible values for $E(Y)$ with a specified confidence level.

By contrast, hypothesis tests ask whether a particular value is plausible or not.

Example: does a population mean of $255,000 seem plausible given our sample of 30 home prices?

- Upper-tail test: can we reject the possibility that $E(Y) = 255$ in favor of $E(Y) > 255$?
- Lower-tail test: can we reject the possibility that $E(Y) = 255$ in favor of $E(Y) < 255$?
Confidence intervals tell us a range of plausible values for $E(Y)$ with a specified confidence level.

By contrast, hypothesis tests ask whether a particular value is plausible or not.

Example: does a population mean of $255,000 seem plausible given our sample of 30 home prices?

- Upper-tail test: can we reject the possibility that $E(Y) = 255$ in favor of $E(Y) > 255$?
- Lower-tail test: can we reject the possibility that $E(Y) = 255$ in favor of $E(Y) < 255$?
- Two-tail test: can we reject the possibility that $E(Y) = 255$ in favor of $E(Y) \neq 255$?
The rejection region method

- Upper-tail test: *null hypothesis* \(NH: E(Y) = 255 \) versus *alternative hypothesis* \(AH: E(Y) > 255 \).
- If \(NH \) is true, then the sampling distribution of the t-statistic
\[
\frac{m_Y - E(Y)}{s_Y / \sqrt{n}} = t_{n-1}
\]
is a bell-shape centered at zero with most of its area (\(\approx 95\% \)) between \(-2\) and \(+2\).
- So, if the value of the t-statistic is “not too far” from zero, we cannot reject \(NH \).
- Conversely, a t-statistic much larger than zero favors \(AH \) (larger since this is an upper-tail test).
- How large does the t-statistic have to be before we reject \(NH \) in favor of \(AH \)?
The rejection region method

1.5 Interval estimation

1.6 Hypothesis testing

Hypothesis testing

Rejection region example

The rejection region method

Hypothesis test for home prices example

The p-value method

P-value example

Hypothesis test for home prices example

One-tail hypothesis tests

One-tail hypothesis tests

One-tail hypothesis tests

Two-tail hypothesis tests

Two-tail hypothesis tests

Hypothesis test errors

1.7 Random errors and prediction

© Iain Pardoe, 2006

- If NH is true, then the sampling distribution of the t-statistic $m_Y - E(Y) / s_Y / \sqrt{n}$ is t_{n-1}.
- Recall t_{n-1} has a bell-shape centered at zero with most of it’s area ($\approx 95\%$) between -2 and $+2$.
- So, if the value of the t-statistic is “not too far” from zero, we cannot reject NH.
- Conversely, a t-statistic much larger than zero favors AH (larger since this is an upper-tail test).
- How large does the t-statistic have to be before we reject NH in favor of AH?
- Significance level (e.g., 5%) determines a rejection region beyond a critical value (e.g., 95^{th} percentile of t_{n-1}).
• **Upper-tail test**: *null hypothesis* \(NH: \ E(Y) = 255 \) versus *alternative hypothesis* \(AH: \ E(Y) > 255. \)
Rejection region example

1.5 Interval estimation
1.6 Hypothesis testing

Hypothesis testing
The rejection region method

Rejection region example
Hypothesis test for home prices example
The p-value method
P-value example
Hypothesis test for home prices example
One-tail hypothesis tests
One-tail hypothesis tests
One-tail hypothesis tests
One-tail hypothesis tests
Two-tail hypothesis tests
Two-tail hypothesis tests
Hypothesis test errors

1.7 Random errors and prediction

- **Upper-tail test:** *null hypothesis* $NH: \ E(Y) = 255$ versus *alternative hypothesis* $AH: \ E(Y) > 255$.

- **t-statistic**
 \[\frac{m_Y - E(Y)}{s_Y / \sqrt{n}} = \frac{278.603 - 255}{53.8656 / \sqrt{30}} = 2.40. \]
• Upper-tail test: *null hypothesis* $NH: \ E(Y) = 255$ versus *alternative hypothesis* $AH: \ E(Y) > 255$.

• t-statistic $= \frac{m_Y - E(Y)}{s_Y / \sqrt{n}} = \frac{278.603 - 255}{53.8656 / \sqrt{30}} = 2.40$.

• Significance level $= 5\%$.
• Upper-tail test: null hypothesis \(NH: E(Y) = 255 \) versus alternative hypothesis \(AH: E(Y) > 255 \).

• t-statistic \(= \frac{\overline{m_Y} - E(Y)}{s_Y / \sqrt{n}} \) = \(\frac{278.603 - 255}{53.8656 / \sqrt{30}} \) = 2.40.

• Significance level = 5%.

• Critical value is the \(95^{th} \) percentile of \(t_{29} \) which is 1.699.
1.5 Interval estimation

1.6 Hypothesis testing

Hypothesis testing
The rejection region method

Rejection region example

Hypothesis test for home prices example
The p-value method
P-value example
Hypothesis test for home prices example
One-tail hypothesis tests
One-tail hypothesis tests
One-tail hypothesis tests
Two-tail hypothesis tests
Two-tail hypothesis tests
Hypothesis test errors

1.7 Random errors and prediction

© Iain Pardoe, 2006

- Upper-tail test: *null hypothesis* \(NH: \ E(Y) = 255 \) versus *alternative hypothesis* \(AH: \ E(Y) > 255 \).
- t-statistic \(= \frac{m_Y - E(Y)}{s_Y / \sqrt{n}} \) = \(\frac{278.603 - 255}{53.8656 / \sqrt{30}} \) = 2.40.
- Significance level = 5%.
- Critical value is the 95th percentile of \(t_{29} \) which is 1.699.
- Since t-statistic \((2.40) > \) critical value \((1.699) \), we reject \(NH \) in favor of \(AH \).
Rejection region example

1.5 Interval estimation

1.6 Hypothesis testing

The rejection region method

Rejection region example

Hypothesis test for home prices example

The p-value method

P-value example

Hypothesis test for home prices example

Upper-tail test: null hypothesis \(NH: E(Y) = 255 \) versus alternative hypothesis \(AH: E(Y) > 255 \).

\[t\text{-statistic} = \frac{\bar{Y} - E(Y)}{s_Y / \sqrt{n}} = \frac{278.603 - 255}{53.8656 / \sqrt{30}} = 2.40. \]

Significance level = 5%.

Critical value is the 95\(^{th}\) percentile of \(t_{29} \) which is 1.699.

Since t-statistic (2.40) > critical value (1.699), we reject \(NH \) in favor of \(AH \).

In other words, the sample data suggest that the population mean is greater than $255,000 (at a 5% significance level).
Hypothesis test for home prices example

Test stat. is in rejection region, p-value $< \text{signif. level}$.
• Upper-tail test: null hypothesis $NH: \ E(Y) = 255$ versus alternative hypothesis $AH: \ E(Y) > 255$.

• If NH is true, then the sampling distribution of the t-statistic $t = \frac{m_Y - E(Y)}{s_Y / \sqrt{n}}$ is t_{n-1}.

• Recall t_{n-1} has a bell-shape centered at zero with most of it’s area ($\approx 95\%$) between -2 and $+2$.

• So, if the upper-tail area beyond the t-statistic is “not too small,” we cannot reject NH.

• Conversely, a very small upper tail-area favors AH.

• How small does the upper-tail area, called the p-value, have to be before we reject NH in favor of AH?
The p-value method

- If NH is true, then the sampling distribution of the t-statistic $t = \frac{\bar{Y} - E(Y)}{s_Y / \sqrt{n}}$ is t_{n-1}.
- Recall t_{n-1} has a bell-shape centered at zero with most of it’s area ($\approx 95\%$) between -2 and $+2$.
- So, if the upper-tail area beyond the t-statistic is “not too small,” we cannot reject NH.
- Conversely, a very small upper tail-area favors AH.
- How small does the upper-tail area, called the p-value, have to be before we reject NH in favor of AH?
- Smaller than the significance level (e.g., 5%).
• Upper-tail test: null hypothesis $NH: E(Y) = 255$ versus alternative hypothesis $AH: E(Y) > 255$.
• Upper-tail test: null hypothesis $NH: \ E(Y) = 255$ versus alternative hypothesis $AH: \ E(Y) > 255$.

• t-statistic $= \frac{\bar{m}_Y - E(Y)}{s_Y/\sqrt{n}} = \frac{278.603 - 255}{53.8656/\sqrt{30}} = 2.40$.
A p-value example

- Upper-tail test: null hypothesis \(NH: \ E(Y) = 255 \)
 versus alternative hypothesis \(AH: \ E(Y) > 255 \).
- \[t = \frac{m_Y - E(Y)}{s_Y / \sqrt{n}} = \frac{278.603 - 255}{53.8656 / \sqrt{30}} = 2.40. \]
- Significance level = 5%.
A p-value example

1.5 Interval estimation
1.6 Hypothesis testing
Hypothesis testing
The rejection region method
Rejection region example
Hypothesis test for home prices example
The p-value method
P-value example
Hypothesis test for home prices example
One-tail hypothesis tests
One-tail hypothesis tests
One-tail hypothesis tests
One-tail hypothesis tests
Two-tail hypothesis tests
Two-tail hypothesis tests
Hypothesis test errors
1.7 Random errors and prediction

- Upper-tail test: null hypothesis $NH: \ E(Y) = 255$ versus alternative hypothesis $AH: \ E(Y) > 255$.
- t-statistic $= \frac{m_Y - E(Y)}{s_Y / \sqrt{n}} = \frac{278.603 - 255}{53.8656 / \sqrt{30}} = 2.40$.
- Significance level $= 5\%$.
- Since the t-statistic (2.40) is between 2.045 and 2.462, the p-value must be between 0.01 and 0.025.
A p-value example

- Upper-tail test: null hypothesis \(NH: E(Y) = 255 \) versus alternative hypothesis \(AH: E(Y) > 255 \).
- t-statistic \(= \frac{m_Y - E(Y)}{s_Y / \sqrt{n}} = \frac{278.603 - 255}{53.8656 / \sqrt{30}} = 2.40 \).
- Significance level = 5%.
- Since the t-statistic (2.40) is between 2.045 and 2.462, the p-value must be between 0.01 and 0.025.
- Since p-value < significance level, we reject \(NH \) in favor of \(AH \).
1.5 Interval estimation

1.6 Hypothesis testing

Hypothesis testing
The rejection region method
Rejection region example
Hypothesis test for home prices example
The p-value method

P-value example

Hypothesis test for home prices example
One-tail hypothesis tests
One-tail hypothesis tests
One-tail hypothesis tests
Two-tail hypothesis tests
Two-tail hypothesis tests
Hypothesis test errors

1.7 Random errors and prediction

© Iain Pardoe, 2006

A p-value example

- Upper-tail test: null hypothesis \(NH: E(Y) = 255 \)
 versus alternative hypothesis \(AH: E(Y) > 255 \).
- t-statistic \(= \frac{m_Y - E(Y)}{s_Y / \sqrt{n}} = \frac{278.603 - 255}{53.8656 / \sqrt{30}} = 2.40 \).
- Significance level = 5%.
- Since the t-statistic (2.40) is between 2.045 and 2.462, the p-value must be between 0.01 and 0.025.
- Since p-value < significance level, we reject \(NH \) in favor of \(AH \).
- In other words, the sample data suggest that the population mean is greater than $255,000 (at a 5% significance level).
Test stat. is in rejection region, p-value < signif. level:
E.g., $NH: E(Y) = 255$ vs. $AH: E(Y) > 255$ (@5%).

Test stat. is in rejection region, p-value < signif. level:

Upper-tail test: reject null
One-tail hypothesis tests

E.g., \(NH: \ E(Y) = 265 \) vs. \(AH: \ E(Y) > 265 \) (@5%).

Test stat. not in rejection region, p-value > signif. level:

Upper-tail test: do not reject null
E.g., $NH: E(Y) = 300$ vs. $AH: E(Y) < 300$ (@5%).
Test stat. is in rejection region, p-value < signif. level:

Lower–tail test: reject null
One-tail hypothesis tests

E.g., \(NH: \ E(Y) = 290 \) vs. \(AH: \ E(Y) < 290 \) (@5%).

Test stat. not in rejection region, \(p\)-value > signif. level:

\[\text{Lower-tail test: do not reject null} \]
E.g., \(NH: \ E(Y) = 255 \) vs. \(AH: \ E(Y) \neq 255 \) (@5%).

Test stat. is in rejection region, p-value < signif. level:

Two-tail test: reject null
Two-tail hypothesis tests

E.g., $NH: E(Y) = 265$ vs. $AH: E(Y) \neq 265$ (@5%).

Test stat. not in rejection region, p-value $>$ signif. level:

Two−tail test: do not reject null

![Diagram showing the rejection region and p-value](image)
1.5 Interval estimation

Hypothesis testing

The rejection region method

Example

Hypothesis test for home prices example

1.6 Hypothesis testing

Hypothesis testing

The rejection region method

Rejection region example

Hypothesis test for home prices example

1.7 Random errors and prediction

© Iain Pardoe, 2006

Hypothesis test errors

- Four possible hypothesis test outcomes:

<table>
<thead>
<tr>
<th>Reality</th>
<th>Decision outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH true</td>
<td>Do not reject NH in favor of AH</td>
</tr>
<tr>
<td>NH false</td>
<td>Reject NH in favor of AH</td>
</tr>
</tbody>
</table>

- \(\text{Pr(type 1 error)} = \text{signif. level} \); analyst selects this.
- But, setting it too low can increase the chance of a type 2 error occurring.
- Trade-off: set signif. level at 5% (sometimes 1% or 10%); reduce chance of type 2 error by having \(n \) as large as possible, using sound statistical methods.
- Also, use hypothesis tests judiciously and always keep in mind the possibility of making these errors.
• New problem: predict an individual Y-value picked at random from the population.
• Is this easier or more difficult than estimating the population mean?
New problem: predict an individual \(Y \)-value picked at random from the population.

Is this easier or more difficult than estimating the population mean?

More difficult: imagine predicting the sale price of a new home on the market (versus estimating the average sale price of homes in this market)—which answer would you be less certain about?
• New problem: predict an individual Y-value picked at random from the population.
• Is this easier or more difficult than estimating the population mean?
• More difficult: imagine predicting the sale price of a new home on the market (versus estimating the average sale price of homes in this market)—which answer would you be less certain about?
• Approach: calculate a *prediction interval*—like a confidence interval but with a larger range of uncertainty.
• Confidence interval: point estimate \pm estimation uncertainty.
• Prediction interval: point estimate \pm prediction uncertainty.
Model: $Y_i = E(Y) + e_i \quad (i = 1, \ldots, n)$.

Y-value to be predicted: $Y^* = E(Y) + e^*$.

Point estimate of Y^*?
• Model: \(Y_i = E(Y) + e_i \) \((i = 1, \ldots, n)\).
• \(Y \)-value to be predicted: \(Y^* = E(Y) + e^* \).
• Point estimate of \(Y^* \)? Sample mean, \(m_Y \).
• Model: $Y_i = \text{E}(Y) + e_i$ $(i = 1, \ldots, n)$.
• Y-value to be predicted: $Y^* = \text{E}(Y) + e^*$.
• Point estimate of Y^*? Sample mean, m_Y.
• Prediction error: $Y^* - m_Y = (\text{E}(Y) - m_Y) + e^*$.
• Model: \(Y_i = E(Y) + e_i \) \((i = 1, \ldots, n)\).

• \(Y \)-value to be predicted: \(Y^* = E(Y) + e^* \).

• Point estimate of \(Y^* \)? Sample mean, \(m_Y \).

• Prediction error: \(Y^* - m_Y = (E(Y) - m_Y) + e^* \).

• Variance of estimation error \((E(Y) - m_Y): s^2_Y/n\).
• Model: $Y_i = \text{E}(Y) + e_i$ \quad (i = 1, \ldots, n).
• Y-value to be predicted: $Y^* = \text{E}(Y) + e^*$.
• Point estimate of Y^*? Sample mean, m_Y.
• Prediction error: $Y^* - m_Y = (\text{E}(Y) - m_Y) + e^*$.
• Variance of estimation error ($\text{E}(Y) - m_Y$): s^2_Y/n.
• Var. of random error (e^*): s^2_Y.

© Iain Pardoe, 2006
Prediction error

- Model: \(Y_i = \mathbb{E}(Y) + e_i \) \((i = 1, \ldots, n)\).
- \(Y \)-value to be predicted: \(Y^* = \mathbb{E}(Y) + e^* \).
- Point estimate of \(Y^* \)? Sample mean, \(m_Y \).
- Prediction error: \(Y^* - m_Y = (\mathbb{E}(Y) - m_Y) + e^* \).
- Variance of estimation error \((\mathbb{E}(Y) - m_Y) \): \(s_Y^2 / n \).
- Var. of random error \((e^*) \): \(s_Y^2 \).
- Var. of prediction error \((Y^* - m_Y) \): \(s_Y^2 (1 + 1/n) \).
• Model: \(Y_i = E(Y) + e_i \quad (i = 1, \ldots, n). \)
• \(Y \)-value to be predicted: \(Y^* = E(Y) + e^*. \)
• Point estimate of \(Y^* \)? Sample mean, \(m_Y \).
• Prediction error: \(Y^* - m_Y = (E(Y) - m_Y) + e^*. \)
• Variance of estimation error \((E(Y) - m_Y) \): \(s_Y^2 / n. \)
• Var. of random error \((e^*) \): \(s_Y^2. \)
• Var. of prediction error \((Y^* - m_Y) \): \(s_Y^2 (1+1/n). \)
• Confidence interval for \(E(Y) \):
 \[m_Y \pm t\text{-percentile}(s_Y / \sqrt{n}). \]
• **Model:** \(Y_i = \text{E}(Y) + e_i \quad (i = 1, \ldots, n). \)

• **Y-value to be predicted:** \(Y^* = \text{E}(Y) + e^*. \)

• **Point estimate of** \(Y^*? \) **Sample mean,** \(m_Y. \)

• **Prediction error:** \(Y^* - m_Y = (\text{E}(Y) - m_Y) + e^*. \)

• **Variance of estimation error** \((\text{E}(Y) - m_Y): s_Y^2/n. \)

• **Var. of random error** \((e^*): s_Y^2. \)

• **Var. of prediction error** \((Y^* - m_Y): s_Y^2(1+1/n). \)

• **Confidence interval for** \(\text{E}(Y): \)
 \[m_Y \pm t\text{-percentile} (s_Y/\sqrt{n}). \]

• **Prediction interval for** \(Y^*: \)
 \[m_Y \pm t\text{-percentile} \left(s_Y \sqrt{1+1/n} \right). \]
Model: \(Y_i = E(Y) + e_i \) \((i = 1, \ldots, n)\).

- **Y-value to be predicted:** \(Y^* = E(Y) + e^* \).
- **Point estimate of \(Y^* \)?** Sample mean, \(m_Y \).
- **Prediction error:** \(Y^* - m_Y = (E(Y) - m_Y) + e^* \).
- **Variance of estimation error \((E(Y) - m_Y) \):** \(s^2_Y/n \).
- **Var. of random error \((e^*) \):** \(s^2_Y \).
- **Var. of prediction error \((Y^* - m_Y) \):** \(s^2_Y (1 + 1/n) \).
- **Confidence interval for \(E(Y) \):**
 \(m_Y \pm t\text{-percentile}(s_Y/\sqrt{n}) \).
- **Prediction interval for \(Y^* \):**
 \(m_Y \pm t\text{-percentile}\left(s_Y \sqrt{1+1/n}\right) \).
- **Which is wider?**
• Example: home prices Y_1, \ldots, Y_{30}.
• Sample mean, m_Y, is 278.603.
• Sample standard deviation, s_Y, is 53.8656.
• Calculate an 80% prediction interval for Y.
Calculating prediction intervals

- Example: home prices Y_1, \ldots, Y_{30}.
- Sample mean, m_Y, is 278.603.
- Sample standard deviation, s_Y, is 53.8656.
- Calculate an 80\% prediction interval for Y.
- 90\% percentile of t_{29} is 1.311.
Example: home prices Y_1, \ldots, Y_{30}.

- Sample mean, m_Y, is 278.603.
- Sample standard deviation, s_Y, is 53.8656.
- Calculate an 80% prediction interval for Y.
- 90th percentile of t_{29} is 1.311.
- $m_Y \pm 90^{th}$ percentile \(s_Y \sqrt{1 + \frac{1}{n}} \) =

 $278.603 \pm 1.311 \left(53.8656 \sqrt{1 + \frac{1}{30}} \right) =

 $278.603 \pm 71.785 = (206.818, 350.388)$.

© Iain Pardoe, 2006
Calculating prediction intervals

- Example: home prices Y_1, \ldots, Y_{30}.
- Sample mean, m_Y, is 278.603.
- Sample standard deviation, s_Y, is 53.8656.
- Calculate an 80\% prediction interval for Y.
- 90^{th} percentile of t_{29} is 1.311.
- $m_Y \pm 90^{th}$ percentile $\left(s_Y \sqrt{1 + 1/n} \right) = 278.603 \pm 1.311 \left(53.8656 \sqrt{1 + 1/30} \right) = 278.603 \pm 71.785 = (206.818, 350.388)$.
- We’re 80\% confident the sale price of an individual, randomly selected home in this market will be between $207,000 and $350,000.
Calculating prediction intervals

- Example: home prices Y_1, \ldots, Y_{30}.
- Sample mean, m_Y, is 278.603.
- Sample standard deviation, s_Y, is 53.8656.
- Calculate an 80% prediction interval for Y.
- 90^{th} percentile of t_{29} is 1.311.
- $m_Y \pm 90^{th}$ percentile $\left(s_Y \sqrt{1+1/n}\right) = 278.603 \pm 1.311 \left(53.8656 \sqrt{1+1/30}\right) = 278.603 \pm 71.785 = (206.818, 350.388)$.
- We’re 80% confident the sale price of an individual, randomly selected home in this market will be between $207,000 and $350,000.
- Calculate a 90% prediction interval for Y.