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Abstract

In a predictive model, what is the expected change in the outcome associated with a unit change
in one of the inputs? In a linear regression model without interactions, this average predictive effect is
simply a regression coefficient (with associated uncertainty). In a model with nonlinearity or interactions,
however, the average predictive effect in general depends on the values of the predictors. We consider
various definitions based on averages over a population distribution of the predictors, and we compute
standard errors based on uncertainty in model parameters. We illustrate with a study of criminal justice
data for urban counties in the United States. The outcome of interest measures whether a convicted
felon received a prison sentence rather than a jail or non-custodial sentence, with predictors available at
both individual and county levels. We fit three models: a hierarchical logistic regression with varying
coefficients for the within-county intercepts as well as for each individual predictor; a hierarchical model
with varying intercepts only; and a non-hierarchical model that ignores the multilevel nature of the data.
The regression coefficients have different interpretations for the different models; in contrast, the models
can be compared directly using predictive effects. Furthermore, predictive effects clarify the interplay
between the individual and county predictors for the hierarchical models, as well as illustrating the
relative size of varying county effects.
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1 Application: sentencing convicted felons in the U.S.

Response, Y , 1: prison sentence, 0: jail/non-custodial sentence. n = 8,446 convictions, 39 counties, 17 states
(Bureau of Justice Statistics’ State Court Processing Statistics, May 1998).

Figure 1: Binary individual predictors: sample means, descriptions, and percent missing data (in parenthe-
ses). “Most serious conviction charge” ( Icviol1, Icviol2, Ictraf, Icdrug, and Icprop) is relative to a
reference category of weapons, driving-related, and other public order offenses.

IREVOKE (0) released pretrial but release revoked

IDETAIN (1) detained after being charged

IACTCJS (9) active criminal justice status at time of offense

IBLACK (17) 1: African American, 0: otherwise

IMALE (0.1) 1: male, 0: female

ITRIAL (0) 1: convicted by trial, 0: convicted by plea

IPPRIS (32) prior stay(s) in state prison

ICPROP (0) burglary or theft (property offense)

ICDRUG (0) drug possession offense

ICTRAF (0) drug trafficking offense

ICVIOL2 (0) assault, other violent crime (less severe violent)

ICVIOL1 (0) murder, rape or robbery (more severe violent)

0.0 0.2 0.4 0.6 0.8 1.0

Sample Mean

Table 1: County-level predictors and summary statistics. Means and standard deviations are raw statistics
(i.e. not population weighted) for 39 counties representing 24% of the U.S. population.

Predictor Description Mean S.D. Min. Max.

Ccrime Index∗ (known to police) crime rate
per 10,000 residents

587 220 214 1,095

Cunemp Unemployment rate (%) 4.4 1.8 2.3 10.0
Cpctaa Census estimate of African American

population (%)
18.9 12.4 1.8 45.9

Ccons Share of vote for Bush in 2000 (%) 38.2 13.3 11.8 55.7
Csouth 1: located in a Southern state, 0:

otherwise
0.28 - 0 1

Cguide 1: voluntary or mandatory state
sentencing guidelines, 0: otherwise

0.23 - 0 1

∗ Index crimes include murder, rape, robbery, aggravated assault, burglary, larceny/theft, motor vehicle theft, and arson.
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For the ith individual in county j, Yij |pij ∼ Bernoulli(pij), where pij = Pr(Yij = 1), and

logit(pij) = log
(

pij

1− pij

)
= XT

i βj

where Xi is a vector of K individual predictors and βj is a vector of K regression parameters (specific to
the jth county). Across counties,

βj = Gj η + αj

where Gj is a K × M block-diagonal matrix for L county-level predictors, η is a vector of M regression
parameters, and αj is a K × 1 vector of county-level errors. Combining,

logit(pij) = XT
i Gj η + XT

i αj

Table 2: Posterior summaries for η: means (standard deviations). The first row contains the county-
level main effects, the first column contains the individual-level main effects, while the remainder of the table
contains interactions. Bold indicates that the absolute value of the posterior mean is larger than the posterior
standard deviation.

County
Individual Ccrime Cunemp Cpctaa Ccons Csouth Cguide

−5.9
(0.5)

0.2
(0.5)

−0.6
(0.5)

0.0
(0.4)

0.4
(0.5)

−0.6
(1.0)

0.4
(0.7)

Icviol1 2.9
(0.5)

−0.3
(0.4)

−0.2
(0.5)

0.8
(0.4)

0.2
(0.5)

−0.2
(0.8)

−0.1
(0.8)

Icviol2 1.8
(0.4)

−0.6
(0.3)

0.3
(0.4)

0.5
(0.3)

−0.1
(0.4)

0.9
(0.7)

−0.1
(0.7)

Ictraf 1.6
(0.4)

−0.2
(0.4)

−0.1
(0.5)

0.1
(0.4)

0.0
(0.4)

0.1
(0.7)

0.8
(0.7)

Icdrug 0.5
(0.4)

−0.6
(0.4)

0.3
(0.5)

0.6
(0.4)

0.3
(0.4)

0.3
(0.8)

0.4
(0.7)

Icprop 1.7
(0.4)

−0.4
(0.3)

0.1
(0.4)

0.4
(0.3)

−0.1
(0.4)

−0.4
(0.7)

−1.0
(0.6)

Ippris 1.9
(0.3)

0.2
(0.3)

0.2
(0.3)

−0.3
(0.2)

0.1
(0.3)

−0.7
(0.5)

−0.2
(0.5)

Itrial 0.6
(0.5)

−0.4
(0.4)

0.2
(0.6)

−0.3
(0.4)

0.1
(0.5)

0.7
(0.7)

0.5
(0.8)

Imale 0.5
(0.3)

−0.0
(0.3)

−0.1
(0.3)

−0.1
(0.2)

−0.0
(0.3)

0.4
(0.5)

Iblack −0.1
(0.2)

0.6
(0.2)

−0.2
(0.3)

0.0
(0.2)

0.1
(0.3)

−0.1
(0.5)

Iactcjs 0.9
(0.2)

0.1
(0.2)

−0.1
(0.3)

−0.1
(0.2)

0.2
(0.3)

−0.1
(0.5)

Idetain 2.2
(0.3)

0.2
(0.3)

−0.2
(0.3)

−0.1
(0.2)

0.2
(0.3)

−1.0
(0.5)

Irevoke 1.4
(0.3)

0.3
(0.3)

0.3
(0.4)

−0.1
(0.3)

0.5
(0.3)

−0.6
(0.6)

Further background is available in Pardoe and Weidner (2004).
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2 Predictive effects

Gelman and Pardoe (2004) define the expected change in y per unit change in the input of interest, u, with
v (the other components of x) held constant, as the predictive effect (PE) of u changing from u(1) to u(2):

δu(u(1)→u(2), v, θ) =
E(y|u(2), v, θ)− E(y|u(1), v, θ)

u(2) − u(1)
. (1)

Related work includes Graubard and Korn (1999), Lane and Nelder (1992), Lee (1981), and McCullagh and
Nelder (1989).

Consider δu(ui, uj , vi, θ
l), which represents the PE as u changes from ui to uj , with v held constant at vi,

evaluated at simulation draw θl. These PEs can be averaged over the model parameters θ and a distribution
for x to define an average predictive effect (APE). Averaging over θ is straightforward using the set of L
simulation draws, θl, l = 1, . . . , L. To average over x we assign each pair of points in δu(ui, uj , vi, θ

l) with a
weight, wij = w(vi, vj), which should reflect how likely it is for u to transition from ui to uj when v = vi.
Since, from the data, uj occurs with vj , wij should be maximized when vj = vi and should in general have
higher values when vj is close to vi. If v lies in a continuous Euclidean space, we suggest, as a default, the
following weighting function based on Mahalanobis distances:

w(vi, vj) =
1

1 + (vi − vj)T Σ−1
v (vi − vj)

.

We can then use these weights in a weighted average of PEs calculated from the data and parameter
simulations. The exact form of the resulting APE depends on the nature of the input u. We consider
separately continuous, binary, and unordered categorical inputs.

2.1 Continuous inputs

If u is a continuous variable, then the APE is a weighted average of PEs:

∆̂u =

∑n
i=1

∑n
j=1

∑L
l=1 wij δu(ui, uj , vi, θ

l) |uj − ui|
L

∑n
i=1

∑n
j=1 wij |uj − ui| , (2)

where the PEs have been weighted by wij as described above, and also by |uj − ui|, since PEs with small
values of |uj − ui| will in general be more unstable (and less reliable as estimates) than PEs with larger
values of |uj − ui|.

We can also define various intermediate averages, which can be useful in understanding how PEs vary
with θ and with x. In particular, simulation predictive effects (SPEs) average over i and j only:

∆̂l
u =

∑n
i=1

∑n
j=1 wij δu(ui, uj , vi, θ

l) |uj − ui|∑n
i=1

∑n
j=1 wij |uj − ui| , (3)

and represent an average predictive effect for each simulation draw θl, l = 1, . . . , L.
We can also define n× n transition predictive effects (TPEs):

∆̂ij
u =

1
L

L∑

l=1

δu(ui, uj , vi, θ
l), (4)

which represent the (simulation averaged) expected change in y per unit change in u when u changes from
ui to uj (and v stays constant). These TPEs can be averaged over j to give n IPEs:

∆̂i
u =

∑n
j=1

∑L
l=1 wij δu(ui, uj , vi, θ

l) |uj − ui|
L

∑n
j=1 wij |uj − ui| , (5)

which represent the (simulation averaged) expected change in y per unit change in u when u changes from
ui to uj (and v stays constant), averaged over all possible transitions uj (excluding to ui itself).
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The APE, (2), can then be considered as an average of L SPEs:

∆̂u =
1
L

L∑

l=1

∆̂l
u,

or as a weighted average of n IPEs:

∆̂u =

∑n
i=1[

∑n
j=1 wij |uj − ui|] ∆̂i

u∑n
i=1[

∑n
j=1 wij |uj − ui|] .

2.2 Binary inputs

If u is a binary variable, then the APE simplifies to:

∆̂u =

∑n
i=1

∑L
l=1[

∑n
j=1 wij ] δu(0, 1, vi, θ

l)
L

∑n
i=1[

∑n
j=1 wij ]

, (6)

while the SPEs simplify to:

∆̂l
u =

∑n
i=1[

∑n
j=1 wij ] δu(0, 1, vi, θ

l)∑n
i=1[

∑n
j=1 wij ]

, (7)

and the TPEs and IPEs are the same:

∆̂ij
u = ∆̂i

u =
1
L

L∑

l=1

δu(0, 1, vi, θ
l). (8)

2.3 Unordered categorical inputs

If some regression parameters are allowed to vary by clusters or groups in the dataset, such as in “random
effects” or “variance components” models, then we can consider the predictive effect on y of switching from
one group to another. In this case u represents all inputs specific to a group, and can be thought of as
an unordered categorical input, while v represents all inputs that vary within groups. For example, with a
multilevel or hierarchical model, u represents inputs measured at the group-level together with group-level
error terms, while v represents inputs measured on individuals within groups—such an example is considered
in detail in Section 5.

In averaging over changes in an unordered categorical input u, it is the magnitude, rather than the sign,
of the effects that is of interest. For example, if some input values have large positive effects and others have
large negative effects, then we would want to say that this input has effects of large magnitude. We shall
follow common practice in statistics and work with the root mean square, so that for unordered categorical
inputs u with K categories, the APE of switching from one category to another is:

∆̂u =

(∑n
i=1

∑K
k=1

∑L
l=1[

∑
j∈{k} wij ] (δu(ui, u

(k), vi, θ
l))2

L
∑n

i=1

∑K
k=1[

∑
j∈{k} wij ]

)1/2

, (9)

where
∑

j∈{k} wij represents weights summed over the data points in category k, and the denominator in
(1) is taken to be 1. Similarly, the SPEs are:

∆̂l
u =

(∑n
i=1

∑K
k=1[

∑
j∈{k} wij ] (δu(ui, u

(k), vi, θ
l))2

∑n
i=1

∑K
k=1[

∑
j∈{k} wij ]

)1/2

. (10)

Further, as in the continuous input case, we can define n×K TPEs:

∆̂ik
u =

1
L

L∑

l=1

δu(ui, u
(k), vi, θ

l), (11)
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which represent the (simulation averaged) expected change in y when switching from the category of individ-
ual i to category k (and v stays constant). These TPEs can be averaged over i to give K category predictive
effects (CPEs):

∆̂k
u =

∑n
i=1[

∑
j∈{k} wij ] ∆̂ik

u∑n
i=1[

∑
j∈{k} wij ]

=

∑n
i=1

∑L
l=1[

∑
j∈{k} wij ] δu(ui, u

(k), vi, θ
l)

L
∑n

i=1[
∑

j∈{k} wij ]
, (12)

which represent the (simulation averaged) expected change in y per unit change in u when switching from
the category of individual i to category k (and v stays constant), averaged over all individuals i (excluding
those individuals already in category k).

3 Multiple linear regression

To see how predictive effects can be used and displayed graphically to aid understanding of regression models,
we simulated n = 180 data-points for the multiple linear regression model with mean function

f(x) = β1 + β2x1 + β3x2 + β4x3 + β5x2x3 + β6x4 + β7x5 + β8x4x5 + β9x6 + β10x
2
6 + β11 log(x7), (13)

where (x1, x3, x4, x5, x6, x7) are independent standard normal, x2 is Bernoulli with probability 0.5, (β1, β2, β3,
β4, β5, β6, β7, β8, β9, β10, β11) are set at (−0.5, 1.0, 1.0, 1.0, 0.5, 1.0, 1.0, 0.5, 1.0, 0.5, 1.0) and the error standard
deviation is 0.5. We then obtained L =100 posterior simulation draws for the β-parameters (under standard
noninformative prior distributions). For this linear model, we can derive simple algebraic expressions for
many of the quantities defined earlier.

Table 3: Algebraic derivations of predictive effects in model (13).

Input PE SPE TPE IPE APE

x1 βl
2 βl

2 β̂2 β̂2 β̂2

x2 βl
3 + βl

5x3i βl
3 + βl

5x̄
w
3 β̂3 + β̂5x3i β̂3 + β̂5x3i β̂3 + β̂5x̄

w
3

x3 βl
4 + βl

5x2i βl
4 + βl

5x̄
w
2 β̂4 + β̂5x2i β̂4 + β̂5x2i β̂4 + β̂5x̄

w
2

x4 βl
6 + βl

8x5i βl
6 + βl

8x̄
w
5 β̂6 + β̂8x5i β̂6 + β̂8x5i β̂6 + β̂8x̄

w
5

x5 βl
7 + βl

8x4i βl
7 + βl

8x̄
w
4 β̂7 + β̂8x4i β̂7 + β̂8x4i β̂7 + β̂8x̄

w
4

x6 βl
9 + βl

10(x6i + x6j) − β̂9 + β̂10(x6i + x6j) − −
x7 βl

11
log(x7j/x7i)
(x7j−x7i)

− β̂11
log(x7j/x7i)
(x7j−x7i)

− −

Here, x̄w
p is the weighted average of xp:

x̄w
p =

∑n
i=1[

∑n
j=1 wij ] xpi∑n

i=1[
∑n

j=1 wij ]
.

The PEs for x1 are constant for each initial and final value of x1, and do not vary with any of the other
inputs, so the only variation is from posterior simulation in the SPEs. This variation can be summarized
graphically in a density estimate or histogram—see the upper left graph in Figure 2—or numerically by APE
= 0.99 (the average of the SPEs) and standard error = 0.04 (the standard deviation of the SPEs).

However, the PEs for x2 in model (13) vary with the value of x3, a continuous input; this can be presented
graphically in a scatterplot of IPEs (8) versus x3. Since in this case the IPEs do not vary with other input
values, the values form a smooth function across the plot (as shown by the thick black line in the upper right
graph in Figure 2). We can incorporate posterior variation on this graph by adding similar thin gray lines
for the PEs (1) themselves (which represent posterior draws of IPEs in the case of binary inputs). Finally,
we can indicate the APE on this graph by adding a red horizontal line at its value.
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Figure 2: Graphical displays of predictive effects for (x1, x2, x3, x4) in model (13). The upper left graph
displays variation in the x1 SPEs about the APE represented by the red line. The thick black line in the
upper right graph shows how IPEs for x2 vary with the value of x3, while the thin gray lines display posterior
variation, and the red line shows the APE. The thick black lines in the lower left graph show how IPEs for
x3 vary with the two values of x2, while the inner dark gray bands show 50% posterior intervals, the outer
light gray bands show 95% intervals, and the red line shows the APE. The thick black line in the lower right
graph shows how IPEs for x4 vary with the value of x5, while the thin gray lines display posterior variation,
and the red line shows the APE.
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This graph indicates that when x2 changes from 0 to 1 (representing a change in category from male to
female, say), and the other inputs stay constant, we can expect y to increase by 2 units when x3 is low (−2),
but only 1 unit when x3 is at a central value (0), and to stay about the same when x3 is high (2). Further,
the (posterior) uncertainty surrounding these statements can be seen to be from about ±0.25 at the center
of the range of x3 to about ±0.5 at the extremes of the range of x3. Finally, averaging over the empirical
distribution of x3 leads to an average predictive effect of x2 on y of about 1 unit.

The PEs for x3 in model (13) take on a different form to those for x2, since they vary with x2, a binary
input. The lower left graph in Figure 2 displays the IPEs (5) as thick black lines at the centers of boxes
representing posterior variation in the PEs (1)— the dark gray boxes extend to the 25th and 75th percentiles,
and the light gray boxes extend to the 2.5th and 97.5th percentiles. Again, we indicate the APE on this
graph with a red horizontal line. We interpret this graph similar to the graph for x2, although the PEs in
this case refer to expected changes in y per unit change in x3, holding all other inputs constant.

The predictive effect graph for x4 is similar to that for x2, since the PEs for x4 vary with x5, a continuous
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input—see the lower right graph in Figure 2. This shows expected changes in y per unit change in x4, holding
all other inputs constant. (The predictive effect graph for x5 is very similar and so is not shown.)

The PEs for x6 in model (13) vary with the initial and final values of x6. This can be seen by averaging
over the posterior simulations and displaying the resulting TPEs (4) in the “levelplot” in the upper left of
Figure 3. This graph displays expected changes in y per unit change in x6 starting from an initial x6 = x6i

Figure 3: Graphical displays of predictive effects for (x6, x7) in model (13). The levelplots on the left display
TPEs, while the scatterplots on the right display the corresponding IPEs which average the TPEs in the
levelplots across the vertical axis. The thick black line shows how the IPEs vary with the input values, the
thin gray lines display posterior variation, and the red line shows the APE.
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ITPEs for x7
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value (on the horizontal axis) and ending at a final x6 = x6j value (on the vertical axis). For example, we can
expect y to increase by around 2.5 units per unit increase in x6 when x6 increases from −2 to −1, but only
0.5 units when x6 increases from 0 to 1. The graph has constant bands running from lower right to upper
left because along these paths x6i +x6j = a constant and the TPEs for this example are β̂9 + β̂10(x6i +x6j).
Thus, one way to summarize this graph is to look along 45◦ lines from lower left to upper right since these
all have identical profiles of TPE values. These 45◦ paths represent x6j = x6i + k, where k is a constant,
and so the main diagonal represents the limit as k → 0 of the predictive effect of x6 on y, i.e. the derivative
of (13) with respect to x6, (β̂9 + 2β̂10x6).

We take an alternative approach in this paper which is to collapse the levelplot across one of the axes (the
vertical axis, say), by averaging across the estimated distribution of the x6j values using weights representing
how likely each transition is. This is exactly what the IPE (5) values are, and these can be displayed
graphically in a similar manner to that for the predictive effects of x4 in the lower right graph of Figure 2.
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Such a graph is displayed is the upper right of Figure 3, where the IPEs are plotted as light gray circles. Since
they do not fall along a line as they did for the predictive effects of x4 in Figure 2, but rather scatter across
a range of values between 0 and 2, we find it helpful to smooth these points using the “loess” (Cleveland and
Devlin, 1988) function in R. This thick black line in the scatterplot highlights any strong trends in how the
IPEs vary with x6. We can construct thin gray lines similarly to show posterior variation, and, as before,
the horizontal red line shows the APE. This approach can easily be generalized for more complex models.

Finally, the PEs for x7 in model (13) vary with the initial and final values of x7. Thus we take the same
approach as for x6 and construct a levelplot of the TPEs (lower left graph of Figure 3) and a lineplot of the
APE and IPEs including posterior variation (lower right graph of Figure 3). The appearance of the graph
makes sense because the logarithmic transformation of x7 in the model means that the predictive effect on
y of a change in x7 is much larger for low values of x7 than for high values.

4 Logistic regression

We next generalize the graphs in Figures 2 and 3 for a logistic regression example in which simple algebraic
expressions for the predictive effects are not available. We simulated n = 180 data-points using the same
linear predictor as (13) and response Bernoulli with probability 1/(1+exp(−f(x))). We then obtained L =100
posterior simulation draws for the β-parameters (under standard noninformative prior distributions).

The PEs for x1 in this example vary not only with the initial and final values of x1, but also with the
values of the other inputs. A levelplot of the TPEs is therefore more complex than in the previous example—
see left graph of Figure 4. There is little systematic variation in this levelplot, but we can again collapse

Figure 4: Graphical displays of predictive effects for x1 in the logistic example. The levelplot on the left
displays TPEs, while the scatterplot on the right shows the corresponding IPEs which average the TPEs in
the levelplot across the vertical axis. The thick black smooth in this scatterplot shows how the IPEs vary with
x6, while the thin gray smooths display posterior variation, and the red line shows the APE.

ITPEs for x1

Initial x1 value

F
in

al
 x

1 
va

lu
e

−2

−1

0

1

2

3

−2 −1 0 1 2 3

0.00

0.05

0.10

0.15

0.20

0.25

x1

IP
E

s 
fo

r 
x1

0.00

0.05

0.10

0.15

0.20

−3 −2 −1 0 1 2 3

it across its vertical axis to produce the scatterplot of IPEs on the right of Figure 4. The IPEs, plotted as
light gray circles, scatter across a range of values between 0 and 0.25, so we smooth these points as before
to highlight any strong trends—this is the thick black line in the scatterplot. Again, the thin gray lines
show posterior variation, and the horizontal red line shows the APE. There is some suggestion that IPEs are
slightly higher in the middle of the range of x1 than at the extremes, but this variation is dominated by the
posterior variation.

However, since in this example the IPEs for x1 also vary with the values of the other inputs, it makes
sense to produce similar graphs with the other inputs along the horizontal axis—see Figure 5. These graphs
suggest that the predictive effect of x1 is a little lower than average for low values of x4 and x6 and also for
high values of x4, x5, and x7. On revisiting the data, this appears to be a consequence of most of the values
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Figure 5: Graphical displays of predictive effects for x1 in the logistic example. The thick black lines show
how IPEs vary with values of the inputs, while the gray lines and bands display posterior variation, and the
red lines show APEs.
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of y for low values of x4 and x6 being 0, and most of the values of y for high values of x4, x5, and x7 being
1. With little response variation at these input values, changing x1 has little impact on y.

We can construct similar graphs for each of the inputs—Figure 6 displays all possible graphs for this
example. We designed these graphs following the “small multiples” idea of Tufte (2001). If the inputs have
comparable scales—as they do in this constructed example—each of the graphs can be given a common
vertical scale to allow easy comparisons of predictive effects across inputs.
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Figure 6: Graphical displays of all predictive effects for the logistic example. Each row contains multiple
graphs of the IPEs for an input, with each graph having a different input on the horizontal axis. Each
column contains the same input along the horizontal axis. The thick black lines show how IPEs vary with
values of the inputs, while the gray lines and bands display posterior variation, and the red lines show APEs.
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5 Application revisited

Figure 7: Graphical displays of predictive effects for first six individual inputs in the multilevel criminal
justice application. Each row contains multiple graphs of the IPEs for an input, with each graph having a
different county-level input on the horizontal axis. Each column contains the same county-level input along
the horizontal axis. The thick black lines show how IPEs vary with values of the county-level inputs, while
the gray lines and bands display posterior variation, and the red lines show APES.
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Figure 8: Graphical displays of predictive effects for last six individual inputs in the multilevel criminal
justice application. Each row contains multiple graphs of the IPEs for an input, with each graph having a
different county-level input on the horizontal axis. Each column contains the same county-level input along
the horizontal axis. The thick black lines show how IPEs vary with values of the county-level inputs, while
the gray lines and bands display posterior variation, and the red lines show APEs.
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Figure 9: Graphical displays of predictive effects for county-level inputs in the multilevel criminal justice
application. Each row contains multiple graphs of the IPEs for an input, with each graph having a different
individual input on the horizontal axis. Each column contains the same individual input along the horizontal
axis. The thick black lines show how IPEs vary with values of the individual inputs, while the gray bands
display posterior variation, and the red lines show APEs.
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Figure 10: Graphical displays of predictive effects for county-level inputs in the multilevel criminal justice
application. Each row contains multiple graphs of the IPEs for an input, with each graph having a different
individual input on the horizontal axis. Each column contains the same individual input along the horizontal
axis. The thick black lines show how IPEs vary with values of the individual inputs, while the gray bands
display posterior variation, and the red lines show APEs.
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Figure 11: Graphical display of predictive effects for switching counties. The thick black lines show how the
CPEs vary by destination county, while the gray bands display posterior variation.
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