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Abstract:

Explained variance (R-squared) has been general-
ized in various ways to multilevel models for hi-
erarchical data structures in which individuals are
grouped into units, and there are variables measured
on individuals and each grouping unit. The mod-
els are based on regression relationships at different
levels, with the first level corresponding to the in-
dividual data, and subsequent levels corresponding
to between-group regressions of individual predic-
tor effects on grouping unit variables. We present
an approach to defining R-squared at each level of
the multilevel model, rather than attempting to cre-
ate a single summary measure of fit, by compar-
ing variances within the model. In simple regres-
sion, our measure generalizes the classical adjusted
R-squared. We also discuss a related variance com-
parison to summarize the degree to which estimates
at each level of the model are pooled together based
on the level-specific regression relationship, rather
than estimated separately. This pooling factor is re-
lated to the concept of shrinkage in simple hierarchi-
cal models. We illustrate the methods on a dataset
of radon in houses within counties using a series of
multilevel models.

1. Introduction

1.1 Explained variation in linear models

Consider a linear regression written as y; = (X3); +
€i,% = 1,...,n. The fit of the regression can be
summarized by the proportion of variance explained:
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where V' represents the finite-sample variance op-
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erator, il/lxi =21 3" (z; — 2)% In a multilevel
model (that is, a hierarchical model with group-level
error terms or with regression coefficients G that vary

by group), the predictors “explain” the data at dif-
ferent levels, and R? can be generalized in a vari-
ety of ways (for textbook summaries, see Kreft and
De Leeuw, 1998; Snijders and Bosker, 1999; Rauden-
bush and Bryk, 2002; Hox, 2002). Xu (2003) reviews
some of these approaches, their connections to in-
formation theory, and similar measures for general-
ized linear models and proportional hazards models.
Hodges (1998) discusses connections between hier-
archical linear models and classical regression.

The definitions of “explained variance” that
we have seen are based on comparisons with

a null model, so that R? is equal to 1 —
residual variance under the larger model
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ious choices of the null model corresponding to pre-

dictions at different levels.

In this paper we shall propose a slightly different
approach, computing (1) at each level of the model
and thus coming up with several R? values for any
particular multilevel model. This approach has the
virtue of summarizing the fit at each level and re-
quiring no additional null models to be fit. In defin-
ing this summary, our goal is not to dismiss other
definitions of R? but rather to add another tool to
the understanding of multilevel models.

1.2 Pooling in hierarchical models

Multilevel models are often understood in terms
of “partial pooling,” compromising between un-
pooled and completely pooled estimates. For ex-
ample, the basic hierarchical model involves data

. N . 2 . h l . d. .b . .
y; ~ N(aj,0;), with population distribution a; ~
N(fta,02) and known hyperparameters fiq, 0y, 0q.
For each group j, the multilevel estimate of «; is
G = W + (1= wy;, (2)
where o2

w=1-—">= (3)

oo oy
is a “pooling factor” that represents the degree
to which the estimates are pooled together (that
is, based on p,) rather than estimated separately
(based on the raw data y;). The extreme possi-
bilities, w = 0 and 1, correspond to no pooling
(&; = y;) and complete pooling (&; = fia), respec-
tively. The (posterior) variance of the parameter «;



is var(a;) = (1 —w)oy. The statistical literature

sometimes labels 1—w as the “shrinkage” factor, a
notation we find confusing since a shrinkage factor of
zero corresponds to complete shrinkage towards the
population mean. To avoid ambiguity, we use the
term “pooling factor” in this paper. The form of
expression (3) matches the form of the definition (1)
of R?, a parallelism we shall continue throughout.
The concept of pooling aids understanding of mul-
tilevel models in two distinct ways: comparing the
estimates of different parameters in a group, and
summarizing the pooling of the model as a whole.
When comparing, it is usual to consider several pa-
rameters «; with a common population (prior) dis-
tribution but different data variances; thus, y; ~
N(aj,07;). Then w; can be defined as in (3), with
oy; in place of o,. Parameters with more precise
data are pooled less towards the population mean,
and this can be displayed graphically by a parallel
coordinate plot showing the raw estimates y; pooled

toward the posterior means d;““lt‘]e"el, or a scatter-

plot of gmultilevel g y;. Pooling of the model as a
whole makes use of the fact that the multilevel esti-
mates of the individual parameters o;, if treated as
point estimates, understate the between-group vari-
ance (Louis, 1984). See Efron and Morris (1975) and
Morris (1983) for discussions of pooling and shrink-
age in hierarchical or “empirical Bayes” inference.
In this paper we present a summary measure, A,
for the average amount of pooling at each level of
a multilevel model. We shall introduce an example
to motivate the need for such summaries, and then
discuss the method and illustrate its application.

1.3 Example: home radon levels

In general, each level of a multilevel model can have
regression predictors and variance components. In
this paper, we propose summary measures of ex-
plained variation and pooling that are defined and
computed at each model level. We demonstrate
with an example adapted from our own research—
a varying-intercept, varying-slope model for radon
gas levels in houses clustered within counties. The
model has predictors for both houses and counties,
and we introduce it here in order to show the chal-
lenges in defining R? and ) in a multilevel context.

Radon is a carcinogen—a naturally occurring
radioactive gas whose decay products are also
radioactive—known to cause lung cancer in high
concentration, and estimated to cause several thou-
sand lung cancer deaths per year in the United
States. The distribution of radon levels in U.S.
houses varies greatly, with some houses having dan-
gerously high concentrations. In order to identify

the areas with high radon exposures, the Environ-
mental Protection Agency coordinated radon mea-
surements in each of the 50 states.

We illustrate here with an analysis of measured
radon in 919 houses in the 85 counties of Min-
nesota. In performing the analysis, we use a house
predictor—whether the measurement was taken in
a basement (radon comes from underground and
can enter more easily when a house is built into
the ground). We also have an important county
predictor—a county-level measurement of soil ura-
nium content. We fit the following model,

vij ~ N(a; + 3; - basement,;, 03),
fori=1,...,n5,5=1,...,J

a; ~ N(y+muj, 02), forj=1,...,J

B; ~ N(d + d1uj, J?,), forj=1,...,J, (4

where y;; is the logarithm of the radon measurement
in house 7 in county j, basement;; is the indicator
for whether the measurement was in a basement, and
u; is the logarithm of the uranium measurement in
county j. The errors in the first line of (4) represent
within-county variation, which in this case includes
measurement error, natural variation in radon lev-
els within a house over time, and variation among
houses (beyond that explained by the basement in-
dicator). The errors in the second and third lines
represent variations in radon levels and basement
effects between counties, beyond that explained by
the county-level uranium predictor. The between-
county errors, o; and 3, are modeled as indepen-
dent (see Section 5 for discussion of this point).

The hierarchical model fits a regression to the in-
dividual measurements while accounting for system-
atic unexplained variation among the 85 counties.
Figure 1 shows the data and fitted regression lines
within counties, and Figure 2 shows the estimated
county parameters and county-level regression lines.

This example illustrates some of the challenges
of measuring explained variance and pooling. The
model has three levels, with a different variance com-
ponent at each level. Here, “levels” correspond to
the separate variance components rather than to the
more usual measurement scales (of which there are
two in this case, house and county). Uncertainty
in the a and § parameters affects the computation
of explained variance for the data-level model—the
simple measure of R? from least-squares regression
will not be appropriate—and also for the county-
level models, since these are regressions with out-
comes that are estimated, not directly observed.

In summarizing the pooling of a batch of param-
eters in a multilevel model, expression (3) cannot in
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Figure 1: Jittered data and estimated regression lines from the multilevel model, y = «o; + 3; - basement,
for radon data, displayed for 8 of the 85 counties j in Minnesota. Both the intercept and the slope vary by
county. Because of the pooling of the multilevel model, the fitted lines do not go through the center of the
data, a pattern especially noticeable for counties with few observations.
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Figure 2: (a) Estimates + standard errors for the county intercepts «;, plotted vs. county-level uranium

measurement u;, along with the estimated multilevel regression line, o = 7o + Y1 u.

(b) Estimates =+

standard errors for the county slopes 3;, plotted vs. u;, along with the estimated multilevel regression line,
B = §p+01u. For each graph, the county coefficients roughly follow the line but not exactly; the discrepancies
of the coefficients from the line are summarized by the hierarchical standard deviation parameters o, 0g.

general be used directly—the difficulty is that it re-
quires knowledge of the unpooled estimates, y;, in
(2). In the varying-intercept, varying-slope radon
model, the unpooled estimates are not necessarily
available, for example in a county where all the mea-
sured houses have the same basement status.

These difficulties inspire us to define measures of
explained variance and pooling that do not depend
on fitting alternative models but rather summarize
variances within a single fitted multilevel model.

2. Summaries based on variance com-
parisons within a single model

We define our generalizations of R? and pooling fac-
tors for each level of a multilevel model and then
in Section 2.5 describe how to compute these sum-

maries using Bayesian posterior simulation draws.

2.1 Notation

We begin by defining a standard notation for a mul-
tilevel model with M levels. (For example, M = 3
in the radon model of Section 1.3.) At each level m,
we write the model as,

o = ™+ e, fork=1,..., K™, (5

(m)

where the p, ’’s are the linear predictors at that

level of the model and the errors eém) come from a
distribution with mean zero and standard deviation
o™ At the lowest (data) level of the model, the
0,(§m)’s correspond to the individual data points (the

y;;’s in the radon model). At higher levels of the

model, the HI(Cm)’s represent batches of effects or re-
gression coefficients (county intercepts a; and slopes



B; in the radon model). Because we work with each
level of the model separately, we shall suppress the
superscripts (m) for the rest of the paper.

The striking similarity of expressions (1) and (3),
which define R? and )\, respectively, suggests that
the two concepts can be understood in a common
framework. We consider each to represent the frac-
tion of variance explained, first by the linear predic-
tor u and then by the hierarchical model for e.

2.2 Variance explained at each level

For each level (5) of the model, we first consider
the variance explained by the linear predictors pig.
Generalizing from the classical expression (1), we

define K
2 (kY1€k>
RP=1-——t. (6)

K
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In a Bayesian simulation context, the expectations
in the numerator and denominator of (6) can be eval-
uated by averaging over posterior simulation draws,
as we discuss in Section 2.5.

R? will be close to 0 when the average residual
error variance is approximately equal to the average
variance of the 6;’s. R? will be close to 1 when
the residual errors ¢, are each close to zero for each
posterior sample. Thus R? is larger when the py’s
more closely approximate the 6 ’s.

In classical least-squares regression, (6) reduces to
the usual definition of R?: the numerator of the ratio
becomes the residual variance, and the denominator
is simply the variance of the data. Averaging over
uncertainty in the regression coefficients leads to a
lower value for R?, as with the classical “adjusted
R?” measure (Wherry, 1931). We discuss this con-
nection further in Section 3.1. It is possible for our
measure (6) to be negative, much like adjusted R?,
if a model predicts so poorly that, on average, the
residual error variance is larger than the variance of
the data.

2.3 Pooling factor at each level

The next step is to summarize the extent to which
the variance of the residuals €5 is reduced by the
pooling of the hierarchical model. We define the
pooling factor as

k{zlE(ek) (7)
E (k{zlek> |

The denominator in this expression is the numerator
in expression (6)—the average variance in the ey’s,
that is, the unexplained component of the variance
of the 0;’s. The numerator in the ratio term of (7) is

A=1-

the variance among the point estimates (the shrink-
age estimators) of the eg’s. If this variance is high
(close to the average variance in the €;’s), then A
will be close to 0 and there is little pooling. If this
variance is low, then the estimated €;’s are pooled
closely together, and the pooling factor A will be
close to 1.

In Section 3.2, we discuss connections between the
pooling factor (7) and the pooling factor w defined
in (3) for the basic hierarchical model.

2.4 Properties of the summary measures

Since R? and A are based on finite-population vari-
ances, they are well-defined for each level of a mul-
tilevel model, and automatically work even in the
presence of predictors at that level. An alternative
approach based on hyperparameters could run into
difficulties in such situations since the hyperparame-
ters may not correspond exactly to the variance com-
parisons we are interested in.

As a model improves (by adding better predictors
and thus improving the py’s), we would generally
expect both R? and X to increase for all levels of
the model. Increasing R? corresponds to more of
the variation being explained at that level of the
regression model, and a high value of A implies that
the model is pooling the €;’s strongly towards the
population mean for that level.

Adding a predictor at one level does not necessar-
ily increase R? and X at other levels of the model,
however. In fact, it is possible for an individual-level
predictor to improve prediction at the data level but
decrease R? at the group level (see Kreft and De
Leeuw, 1998; Gelman and Price, 1998; Hox, 2002,
for discussion and examples of this phenomenon).
For the purpose of this paper, we merely note that a
model can have different explanatory power at dif-
ferent levels.

2.5 Posterior simulation computations

Multilevel models are increasingly evaluated in a
Bayesian framework and computed using posterior
simulation, in which inferences for the vector of pa-
rameters are summarized by a matrix of simulations
(see, e.g., Gilks et al., 1996; Carlin and Louis, 2000;
Gelman et al., 2003).

We can then evaluate R? and \ at each level m
of the model using the posterior simulations (not
simply the parameter estimates or posterior means),
as follows:

Evaluate R? from (6):

1. From each simulation draw of the model param-
eters:



(a) Compute the vector of 0’s, predicted val-
ues ur and the vector of residuals, € =
Gk — MUk

K
(b) Compute the sample variances, k\ilek and
% =
k:lEk'
2. Average over the simulation draws to estimate
K K
E <kY10k) and E (kY1€k)’ and then use these
to calculate R?.

Evaluate A from (7) using these same simulation
draws in a different way:
1. For each k, estimate the posterior mean E(ey)
of each of the errors ¢ as defined in step 1(a)
above.

2. Compute the variance of the K values of

K
E(ex), k\ilE(ek)’ and then use this, along with

K
E(k\ilek) from step 2 above to calculate A.

3. Connections to classical definitions

3.1 Classical regression

The classical normal linear regression model can be
written as y; = (XfB); +¢€;,1 = 1,...,n, with linear
predictors (X3); and errors ¢; that are normal with
zero mean and constant variance o2.

If we plug in the least-squares estimate, B =
(XTX)~1XTy, then the proportion of variance ex-

plained (6) simply reduces to the classical definition,

n

E (V Gi)
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where I is the n x n identity matrix, H =
X(XTX)"tXT and I. is the n x n matrix with
1—1/n along the diagonal and 1/n off the diagonal.
In a Bayesian context, to fully evaluate our expres-
sion (6) for R?, one would also average over posterior
uncertainty in 3 and o. Under the standard nonin-
formative prior density that is uniform on (3, log o),

the proportion of variance explained (6) becomes,

R2—1_ ( n—3 )yT(I—H)y
n—p-—2 yTl.y
where p is the number of columns of X.
This is remarkably similar to the classical adjusted
R?. In fact, if we plug in the classical estimate,
62 = yT'(I-H)y/(n—p), rather than averaging over
the marginal posterior distribution for o2, then (6)
becomes

n—p yTI.y

y'(I—-H)y
yTI.y

)

)

)

which is exactly classical adjusted R?.  Since
nf;EQ > Z—:; for p>1, our “Bayesian adjusted R2”
leads to a lower measure of explained variance than
the classical adjusted R?. This makes sense, since
the classical adjusted R? could be considered too
high since it does not account for uncertainty in o.

The pooling factor defined in (7) also has a simple
form. Evaluating the expectations over the poste-
rior distribution yields A =1— (n—p—2)/(n — 3).
If we plug in the classical estimate, 62 = y (I —
H) y/(n—p), rather than averaging over the marginal
posterior distribution for o2, then (7) becomes \ =
1—(n—p)/(n—1). We can see that in the usual
setting where the number of regression predictors, p,
is small compared to the sample size, n, this pooling
factor A for the regression errors will be close to zero.
This makes sense because, in this case, the classical
residuals (y—X B)i are nearly independent, and they
closely approximate the errors ¢; = (y—X(3);. Thus,
very little shrinkage is needed to estimate these un-
observed ¢;’s.

3.2 One-way hierarchical model

The one-way hierarchical model has the form, y;; ~
N(aj,og), i=1,...,n5, j=1,...,J, with popula-
tion distribution a; ~ N(uq,02), and we can deter-
mine the appropriate variance comparisons at each
of the two levels of the model. For simplicity, we
assume that the within-group sample sizes n; are all
equal to a common value n, so that the total sam-
ple size is N = nJ. The basic hierarchical model of
Section 1.2 corresponds to the special case of n = 1.

We use the usual noninformative prior density
that is uniform on (uq,log oy, 04 ). It is not possible
to derive closed-form expressions for (6) and (7) av-
eraging over the full posterior distribution. Instead,
we present plug-in expressions using the method-of-
moments estimators,

-
A2 | A2 Y I.y
6, +o,/n = N
r _
~2 Y (Ic_Ic)y
_ T -
where y = (Y11, -+, Yn1s -+, Y175+, Yns)" i the N-

vector of responses, I. is the N x N block-diagonal
matrix with n X n matrices containing elements
1/n—1/N along the diagonal and n X n matrices
containing elements —1/N off the diagonal, and I.
is the N x N matrix with 1—1/N along the diagonal
and —1/N off the diagonal. Thus, the first esti-
mator in (8) is the sample variance of the J group
means (rescaled by (J—1)/J), while the second esti-
mator is the pooled within-group variance (rescaled

by (n—1)/n).



Conditional on o, and o, the proportion of vari-
ance explained, (6), at the data level is

y (- IL)y+wy" L.y + J(1 —w)o;
yTlcy '

Plugging in the estimators (8) leads to
. <n+ 1) y (I — 1)y

n yley

2
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a y

R? =
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Subject to finite-sample size adjustments, this is ap-
proximately equal to the usual value for R? in this
model, 1 — o2 /(02 + 02).

Conditional on o, and o, the pooling factor, (7),
at the data level is - -

N1 y' (e —L)y+w’y" Loy
Plugging in the estimators (8) leads to
n?y" Ly+y"(l.— 1)y

A = 1— —
n(n+1)yTl.y
- 1— nil 63& + 5’5/%

o3 +62/n

If the within-group sample sizes n are reason-
ably large, this data-level pooling factor A is close
to zero, which makes sense because the data-level
residuals are good approximations to the data-level
errors (similar to the case of classical regression as
discussed in Section 3.1).

At the group level, the one-way hierarchical model
has no predictors, and so R? = 0.

Conditional on o, and o, the pooling factor, (7),
at the group level is

(1-w) yTIc Y
(1—wyTly+Jo}
Plugging in the estimators in (8) leads to
oy Ly -y (.- 1)y

nyTl.y

A=1-—

A =1

e
N 62 +62/ n’
This expression reduces to (3) by setting n equal to
1 for the basic hierarchical model of Section 1.2.

4. Applied example

We fit four models to the example from Section 1.3 of
home radon levels. Figure 3 shows the proportion of
explained variance and pooling factor for each level
of each model, as computed directly from posterior
simulation draws as described in Section 2.5. We
discuss the results for each model in turn:

Model 1. A simple linear regression of log radon
level on basement indicators, illustrating the theo-
retical calculations of Section 3.1:

R? is very low, suggesting a poorly fitting model,
and A is essentially zero, indicating that the errors
are estimated almost independently (which gener-
ally holds for a data-level regression model in which
there are many more data points than predictors).
By comparison, the classical R? for this regres-
sion, plugging in the least-squares estimate for g,
is 1 —y"(I—H)y/y"I.y = 0.07. The theoretical
value for A for this model, is 1 — (n—3)/(n—p—2) =
0.07. These results are all essentially the same be-
cause there is very little uncertainty in 5 and ¢ when
fitting this simple model, hence little is changed by
moving to fully-Bayesian inference.

Model 2. A simple one-way hierarchical model
of houses within counties, extending the theoretical
calculations of Section 3.2 to account for unequal
sample sizes and variance parameter uncertainty:

At the data level, R? shows some improvement
over the simple linear regression model but is still
quite low. The pooling factor A\ remains close to
zero. If there were equal sample sizes within each
county, the theoretical value for R? for this data
level model, based on plugging in the estimators (8),
comes to 0.13. Using the posterior simulations ac-
counts for unequal sample sizes and uncertainty in
the variance parameters. Similarly, the approximate
value for \ for this data level model, plugging in the
estimators (8), comes to 0.05.

At the county level, R? = 0 since this model has no
county-level predictors. The pooling factor A = 0.54
indicates that county mean estimates are weighted
about equally between county sample means and the
overall population mean. If there were equal sample
sizes within each county, the calculated value for A
for this county level model, plugging in the estima-
tors (8), comes to 0.37. In this case, accounting for
unequal sample sizes and variance parameter uncer-
tainty leads to a very different result.

Model 3. A varying-intercept hierarchical model,
with basement as an individual-level predictor and
log uranium as a county-level predictor:

At the data level, R? improves further over the
one-way hierarchical model but still remains quite
low. The pooling factor A remains close to zero.

For the intercept model, R? = 0.73 indicates that
when we restrict basement effects to be the same
in all counties, uranium level explains about three-
quarters of the variation among counties. The pool-
ing factor implies that county mean estimates are
pooled on average about 80% toward the regression
line predicting county means from uranium levels.



Predictors included in the model R? at each level: A at each level:

Y o B y o g
Basement (simple linear regression) 0.07 0.00
County (simple one-way hierarchical model) 0.12 0 0.04 0.54
Basement + county 4+ uranium 0.21 0.73 0.03 0.77

Basement 4 county + uranium + basement x county 0.21 0.53 0.83 0.03 0.81 0.97

R? at each level:

y o B
Model 1 | &
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Figure 3: Proportion of variance explained and pooling factor at the level of data y, county-level intercepts
«, and county-level slopes (3, for each of four models fit to the Minnesota radon data. Blank entries indicate
variance components that are not present in the given model. Results shown in tabular and graphical forms.

Model 4. The full varying-intercept, varying-
slope model (4), in which the basement effect 3 is
allowed to vary by county:

At the data level, R? is still quite low, indicating
that much of the variation in the data remains un-
explained by the model (as can be seen in Figure 1),
and A is still close to zero.

For the intercept model R? close to 50% indicates
that uranium level explains about half the varia-
tion among counties, and X close to 80% implies
that there is little additional information remaining
about each county’s intercept. The estimates are
pooled on average about 80% toward the regression
line (as is apparent in Figure 2a). R? at the inter-
cept level has decreased from the previous model in
which basement effects are restricted to be the same
in all counties; allowing the basement effects to vary
by county means that there is less variation remain-
ing between counties for uranium level to explain.

For the slope model, R? is over 80%, implying
that the uranium level explains much of the system-
atic variation in the basement effects across counties.
The pooling factor A is almost all the way to 1, which
tells us that the slopes are almost entirely estimated
from the county-level model, with almost no addi-
tional information about the individual counties (as

can be seen in Figure 2b).

The fact that much of the information in R? and
A is captured in Figures 1 and 2 should not be taken
as a flaw of these measures. Just as the correlation is
a useful numerical summary of information available
in a scatterplot, the explained variance and pooling
measures quickly summarize the explanatory power
and actions of a multilevel model, without being a
substitute for more informative graphical displays.

5. Discussion

We suggest computing our measures for the propor-
tion of variance explained at each level of a multi-
level model, (6), and the pooling factor at each level,
(7). These can be easily calculated using posterior
simulations as detailed in Section 2.5. The mea-
sures of R? and \ conveniently summarize the fit at
each level of the model and the degree to which esti-
mates are pooled towards their population models.
Together, they clarify the role of predictors at differ-
ent levels of a multilevel model. They can be derived
from a common framework of comparing variances at
each level of the model, which also means that they
do not require the fitting of additional null models.

Expressions (6) and (7) are closely related to the



usual definitions of adjusted R? in simple linear re-
gression and shrinkage in balanced one-way hierar-
chical models. From this perspective, they unify the
data-level concept of R? and the group-level concept
of pooling or shrinkage, and also generalize these
concepts to account for uncertainty in the variance
components. Further, as illustrated for the home
radon application in Section 4, they provide a useful
tool for understanding the behavior of more complex
multilevel models.

We define R? and A at each level of a multilevel
model, where the error terms at each level are mod-
eled as independent. However, models such as the
full varying-intercept, varying-slope model used in
the home radon application can be generalized to
allow for correlated intercepts and slopes. The as-
sumption of uncorrelated intercepts and slopes is of-
ten reasonable when there are useful predictors avail-
able for each grouping unit (as is the case for the
home radon application). Nevertheless, it would be
useful to extend R? and ) for use in situations where
such an assumption was not reasonable.

We have presented our R? and )\ measures in a
Bayesian framework. However, they could also be
evaluated in a non-Bayesian framework using sim-
ulations from distributions representing estimates
and measures of uncertainty for the predicted values
i and the residuals €. For example, these might
be represented by multivariate normal distributions
with a point estimate for the mean and estimated
covariance matrix for the variance, or alternatively
by bootstrap simulations.

We have derived connections to classical defini-
tions of explained variance and shrinkage for models
with normal error distributions, and illustrated our
methods using a multilevel model with normal errors
at each level. However, (6) and (7) do not depend
on any normality assumptions, and, in principle,
these measures are appropriate variance summaries
for models with nonnormal error distributions (see
also Goldstein et al., 2002; Browne et al., 2003). It
may be possible to develop analogous measures us-
ing deviances for generalized linear models.

References

Browne, W. J., S. V. Subramanian, K. Jones, and
H. Goldstein (2003). Variance partitioning in mul-
tilevel logistic models that exhibit over-dispersion.
Technical report, School of Mathematical Sci-
ences, University of Nottingham.

Carlin, B. P. and T. A. Louis (2000). Bayes and
Empirical Bayes Methods for Data Analysis (2nd
ed.). Boca Raton, FL: Chapman & Hall/CRC.

Efron, B. and C. Morris (1975). Data analysis using
stein’s estimator and its generalizations. Journal
of the American Statistical Association 70, 311—
319.

Gelman, A., J. B. Carlin, H. S. Stern, and D. B.
Rubin (2003). Bayesian Data Analysis (2nd ed.).
Boca Raton, FL: Chapman & Hall/CRC.

Gelman, A. and P. N. Price (1998). Discussion
of “Some algebra and geometry for hierarchical
models, applied to diagnostics,” by J. S. Hodges.
Journal of the Royal Statistical Society, Series B
(Methodological).

Gilks, W. R., S. Richardson, and D. J. Spiegelhal-
ter (Eds.) (1996). Markov Chain Monte Carlo
in Practice.  Boca Raton, FL: Chapman &
Hall/CRC.

Goldstein, H., W. J. Browne, and J. Rasbash (2002).
Partitioning variation in multilevel models. Un-
derstanding Statistics 1, 223-232.

Hodges, J. S. (1998). Some algebra and geometry for
hierarchical models, applied to diagnostics. JRSS-
B 60, 497-536.

Hox, J. (2002). Multilevel Analysis: Techniques and
Applications. Mahwah, NJ: Lawrence Erlbaum
Associates.

Kreft, I. and J. De Leeuw (1998). Introducing Mul-
tilevel Modeling. London: Sage.

Louis, T. A. (1984). Estimating a population of pa-
rameter values using bayes and empirical bayes
methods. Journal of the American Statistical As-
sociation 78, 393-398.

Morris, C. (1983). Parametric empirical bayes in-
ference: theory and applications (with discus-
sion). Journal of the American Statistical Associ-
ation 78, 47-65.

Raudenbush, S. W. and A. S. Bryk (2002). Hierar-
chical Linear Models (2nd ed.). Thousand Oaks,
CA: Sage.

Snijders, T. A. B. and R. J. Bosker (1999). Multilevel
Analysis. London: Sage.

Wherry, R. J. (1931). A new formula for predicting
the shrinkage of the coefficient of multiple corre-
lation. Annals of Mathematical Statistics 2, 440—
457.

Xu, R. (2003). Measuring explained variation
in linear mixed effects models.  Statistics in

Medicine 22, 3527-3541.



