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Abstract

Before a regression model is used to address questions
about the relationship between a response variable and
predictors, the fit of the model to the data should be
assessed. For example, consider a logistic regression
model for explaining the dependence of a binary out-
come variable on a set of predictor variables or for pre-
dicting the outcome variable based on the predictors.
Checking the fit of the model before it is used in a prac-
tical setting is of critical importance. If a model is found
to be deficient, the nature of the deficiency may indicate
a need for some aspect of the model to be reformulated
or that poorly fitting observations need to be considered
separately. I propose graphical methodology based on a
Bayesian framework to help address issues such as this.
Plots can be constructed quickly and easily for any model
of interest, and goodness of fit assessed. These plots are
more intuitive and easy-to-use than traditional graphical
diagnostic methods for regression such as residual plots.

1 Introduction

Cook and Pardoe (2000) suggested a graphical technique
for assessing the fit of a regression model which they
called a “Gibbs marginal model plot.” This methodol-
ogy was developed for linear and additive models in Par-
doe (2001b), in which the plots were renamed “Bayes
marginal model plots” (BMMPs). The plots provide a
way for visualizing model uncertainty in the “marginal
model plots” (MMPs) of Cook and Weisberg (1997).

This article describes the BMMP methodology in the
context of a binary logistic regression analysis. Sec-
tion 2 highlights the issues involved in assessing the fit
of logistic regression models; it also introduces an ex-
ample dataset on breast cancer diagnosis that will be
used to illustrate the proposed methodology, and reviews
how MMPs can help diagnose the fit of a model. With-
out guidance on the level of uncertainty in the model,
MMPs can be difficult to interpret however—Section 3

provides details on how Bayesian model checking ideas
can be used to address this problem, and illustrates how
BMMPs can guide model improvement for the breast
cancer data. Section 4 contains a discussion.

2 Background

How can we assess the fit of a regression model used to
explain the dependence ofy on x or to predicty from
x? Let the unknown conditional distribution ofy given
x be represented by its cumulative distribution function,
F(y|x). Suppose we have derived a model forF(y|x),
and denote this by its cumulative distribution function,
Mθ(y|x), whereθ is a vector of unknown parameters.

For a frequentist analysis, assume thatθ can be consis-
tently estimated underMθ(y|x) with θ̂. For a Bayesian
analysis, assume that inference will be based on a poste-
rior distribution for the model denoted byMθ(y|x, yd),
whereyd is the n-vector of data, that is the observed
responses. Before usingMbθ(y|x) or Mθ(y|x,yd) to
address a practical issue, we need to be confident that
the model provides asufficiently accurateapproximation
to F(y|x), where the accuracy is gauged relative to the
practical issue. If the model is found to be deficient, the
nature of the deficiency may indicate a need for some as-
pect of the model to be reformulated or that poorly fitting
observations need to be considered separately. However,
identifying the nature of a model deficiency for logis-
tic regression is not an easy task (see Pregibon, 1981;
Landwehr, Pregibon, and Shoemaker, 1984).

An example of a logistic model assessment problem is
the “Wisconsin Breast Cancer Data” (Bennett and Man-
gasarian, 1992). This consists of 681 cases of poten-
tially cancerous tumors in Wisconsin in the 1980s, 238 of
which turned out to be malignant, and 443 of which were
benign. Determining whether a tumor is malignant or be-
nign is traditionally accomplished with an invasive surgi-
cal biopsy procedure. An alternative, less invasive tech-
nique, allowing examination of a small amount of tissue
from the tumor, is “Fine Needle Aspiration” (FNA). FNA
provides nine cell features for each case; the biopsy de-
termines the tumor status as malignant or benign.

Features of the tissue cells can be used as predictors in
a model with tumor status as the response. The hope is to



use the model to successfully predict tumor status based
only on the FNA predictors. Of critical importance is
whether the model can provide an accurate alternative to
the biopsy procedure for future patients.

The dataset consists of responsey = Class1 = 0 if ma-
lignant, 1 if benign, and predictor variables:x1 = Adhes
= marginal adhesion,x2 = BNucl = bare nuclei,x3 =
Chrom = bland chromatin,x4 = Epith = epithelial cell
size,x5 = Mitos = mitoses,x6 = NNucl = normal nu-
cleoli, x7 = Thick = clump thickness,x8 = UShap = cell
shape uniformity, andx9 = USize = cell size uniformity.

The predictors,x = (x1, . . . , x9)T, are all integers be-
tween one and ten (one represents a normal state, ten an
abnormal one), and are determined by a doctor assessing
the tissue cells through a microscope. Together, the pre-
dictors provide a wealth of information on tumor status.
In fact, it appears that a subset of the predictors can pro-
vide nearly all the information available. Subset selec-
tion on the full set of nine predictors, removing the least
significant predictor at each stage, leads to the following
model worthy of consideration:

Model 1: Five predictors (Adhes, BNucl, Chrom, NNucl
and Thick).

Some traditional numerical measures of fit include Wald
p-values for predictors in the model each less than
0.0005, p-values for adding one more predictor each
greater than 0.05, and residual deviance of 96.5 on 675
degrees of freedom. Based on these numbers, the model
appears to fit well. However, perhaps plots of the data
can give us further information on the fit of this model.
Figure 1 shows two residual plots with non-parametric
smooths superimposed, one versusMitos, a predictor
not in the model, and the other versus the linear fit from
the model. Residual plots are the traditional graphical
method for assessing lack of fit of a regression model.
The idea is to look at the residuals plotted against func-
tions of the predictors in a series of two-dimensional
scatterplots, and look for patterns that suggest violation
of assumptions in the model.

The top plot in Figure 1 is a residual plot with hori-
zontal axis equal toMitos. If there are any unexpected
patterns in this plot, then perhapsMitos could usefully
be added to the model. One problem with using residual
plots in generalized linear models is that it can be diffi-
cult figuring out what kinds of patterns are unexpected
and which are entirely to be expected. In this particular
context, the main unexpected pattern to look for is a non-
constant mean function in the plot. Here there appears to
be nothing unusual since the smooth of the residuals is
flat, so there is nothing to suggest thatMitos could use-
fully be included.

The lower plot has horizontal axis equal to the linear
fit from the model. This looks a little strange, and can be
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Figure 1: Residual plots for model 1.

hard to interpret. In particular, the way the residuals fall
on two distinct curves is anexpectedpattern due entirely
to the fact that the response values are either zero or one,
and the fitted probabilities are a non-linear but monotone
function of the linear fit. But again the smooth of the
residuals is essentially a horizontal line, so there is no
evidence of lack of fit from this plot either.

Alternatively, visualizegoodnessof fit in a marginal
model plot (MMP), for example the MMP with horizon-
tal axis h = Mitos in Figure 2. Cook and Weisberg
(1997) introduced these plots from a frequentist perspec-
tive, in which the solid line is a smooth of the data and
the dashed line is a smooth of the fitted values from the
model. The rationale for the MMP is this statement:

EF(y|x) = EbM(y|x), ∀ x ∈ X (1)

⇐⇒ EF(y|h) = EbM(y|h), ∀ h = h(x) (2)

whereEF denotes expectation underF, EbM denotes ex-
pectation underMbθ, andX is the sample space ofx:
think of x here in the same way that it is thought about
in subset selection, i.e. predictors that are included in the
model being considered, as well as potential predictors
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Figure 2: MMP for the mean,h = Mitos, model 1.

not in the current model. This result requires only thath
be measurable with respect tox.

Equality (1) is what we would like to check, but if the
dimension ofx is greater than two, thenE(y|x) is diffi-
cult to visualize. However, ifh is univariate, thenE(y|h)
can be visualized in a 2-D scatterplot, and equality (2)
can be checked. So, the idea in a MMP is to compare
EF(y|h) andEbM(y|h) for varioush to gain information
about the relationship betweenEF(y|x) andEbM(y|x).
The mean function based onF can be consideredmodel-
free, while the function usinĝM is model-based.

We can estimate the two mean functions with smooths.
Obtain ÊF(y|h) by smoothingy versush using a non-
parametric smooth such as a cubic smoothing spline. The
corresponding model-based estimate of the mean func-
tion uses the relationshipEbM(y|h) = E[EbM(y|x)|h]. So,

obtain ÊbM(y|h) by smoothingEbM(y|x) versush; note
that EbM(y|x) is the (assumed) mean function from the
fitted model, i.e. thefitted valuesfrom the model. Super-
imposeÊF(y|h) andÊbM(y|h) on a plot ofy versush to
obtain a MMP for the mean in the (marginal) direction
h. Using the same method and smoothing parameter for
the mean function estimates underF andM̂ allows point-
wise comparison of the two estimates, since any estima-
tion bias should approximately cancel. See Bowman and
Young (1996) for elaboration of this point.

Ideas for selecting useful functionsh to consider in
practice are given in Cook and Weisberg (1997), and in-
clude fitted values, individual predictors in the model,
potential predictors not in the model, linear combinations
of the predictors, and random linear projections of the
predictors. Other possibilities include functionsh where
lack of fit is most likely to be observed.

Now, if M is an accurate approximation toF, then
for any quantityh the marginal mean function estimates

should agree,̂EF(y|h) ≈ ÊbM(y|h). Any indication that
the estimated marginal mean functions do not agree for
one particularh callsM into question; if they agree for a
variety of plots, there is support forM.

So, how should Figure 2 be interpreted? In this plot,
the smoothing splines have four effective degrees of free-
dom and the points have been jittered to aid visualization
of data density. Most of the data is on the left where
Mitos = one or two, and here the smooths match well.
But, for Mitos three or higher, the model seems to pre-
dict higher probabilities of a tumor being benign than
the data indicate. But, is the gap between the smooths so
large that we should be concerned, or so small that we
can just put it down to random variation?

The same issue of variability arises in residual plots
also. The deviance, which is essentially a numerical
summary of a residual plot for a logistic regression, pro-
vides one way to address this issue. However, if a model
is identified as poorly fitting due to a high deviance in
relation to the error degrees of freedom, there is no guid-
ance available on how to improve the model. It would be
helpful toseethe nature of the lack-of-fit in a graphical
display, and in this respect the MMP is to be preferred
over the residual plot since it is easier to interpret.

Even if Mθ(y|x) = F(y|x), the estimated marginal
mean function estimates in an MMP would not match
exactly. From a frequentist perspective, the data can be
thought of as just one realization of many possible sam-
ples. So, a possible solution to the problem of compar-
ing the estimates is to calculate a sampling-theory con-
fidence band or perhaps generate replicate data by boot-
strapping. Alternatively, from a Bayesian perspective,
the data are fixed, but the variability in the model esti-
mates is given explicitly by posterior distributions for the
parameters. A possible solution to the assessment prob-
lem displays this variability in the model smooth, allow-
ing the analyst to more easily judge whether it would be
reasonable for the data to be generated by the particular
model in question.

3 Bayes marginal model plots

To introduce ideas and keep notation concise, consider
assessing how well a modelM = M(y|θ) fits poten-
tial data y = (y1, . . . , yn)T, where θ is assumed to
have a prior probability distribution. Box (1980) pro-
posed a Bayesian diagnostic for checkingM based on the
marginal, or predictive, distribution ofy. He suggested
assessingM by referring the value of the predictive den-
sity for the observed data,f(yd|M), to the density func-
tion f(y|M), by calculating a tail area, say. A “small”
tail area indicates thatyd would be unlikely to have been
generated byM, and thus callsM into question. More



generally,M can be assessed by referring the value of
the predictive density of some relevant checking func-
tion, g(y), at yd to its predictive density, for a variety
of g. Examples of usefulg in practice include residuals,
order statistics, and moment estimators.

Rubin (1984) proposed an alternative approach that
does not require proper priors, as Box’s approach does,
using the posterior predictive density

f(y|yd, M) =
∫

f(y|θ, M)π(θ|yd, M)dθ

wheref(y|θ, M) is the likelihood fory andπ(θ|yd,M)
is the posterior density ofθ. The posterior predictive
distribution ofy can be thought of as a distribution for
potential data that we might observe, if the model that
we think producedyd, including the particularθ value,
was used to produce a new set of data. Since this partic-
ular θ value is unknown, average over plausible values
using its posterior distribution. Again, diagnostics sim-
ilar to Box’s tail area and checking functionsg can be
constructed. Use of the posterior predictive distribution
in a goodness of fit test was first proposed by Guttman
(1967). Rubin’s approach has been extended by Gelman,
Meng, and Stern (1996) to allow the checking functiong
to depend onθ and nuisance parameters as well as ony.

Another way to think about Rubin’s approach is in
terms of a sampling simulation. Gelman et al. (1996)
provide references to many papers that discuss this inter-
pretation. The idea is to draw a value ofθ from its poste-
rior distribution, and then generate a sample ofn realiza-
tions from the modelM indexed by thisθ. Repeat this
process a large numberm of times and then compare the
datayd to them realizations fromM. Then, intuitively,
if yd “looks like” a typical realization fromM, there is
no reason to doubt the fit ofM. On the other hand, if
yd appears to be very “unusual” with respect to them
realizations fromM, thenM is called into question. To
do this in practice, methods for comparingyd to them
realizations fromM and measures of “unusualness” need
to be developed. But once done, the methodology can be
applied in any situation where samples can be generated
from the posterior distributions forθ.

A graphical way to do this is based on the MMPs intro-
duced earlier. In regression,θ provides “fitted values”.
So, instead of samplingy, compare model-free predicted
values with expectedy-values based on sampledθ val-
ues. A Bayes marginal model plot (BMMP) is a scatter-
plot of y versush with a mean function estimate underF
superimposed. Then, superimpose a mean function esti-
mate for each model sampleMθt , t = 1, . . . , m.

Recall that the smoothing parameters for the smooths
in a particular MMP need to be equal to allow their point-
wise comparison. Similarly, the smooths in a BMMP
should all have the same smoothing parameter,γ. There-

fore it is desirable to selectγ so that the smooths are flex-
ible enough to capture systematic trends in all the corre-
sponding scatterplots, while not over-fitting too much in
any one scatterplot. This is clearly impractical, so a pru-
dent compromise is to graphically selectγ to capture the
systematic trends only for the mean functions in the scat-
terplots for the data and for the model fitted values.

If enough samples are taken, saym = 100, the Bayes
mean function estimates,̂EMθt

(y|h), t = 1, . . . , m, will
form a mean functionband under M. The plot then
provides a visual way of determining whether there is
any evidence to contradict the possibility thatF(y|x) =
M(y|x). If, for a particularh, the mean function estimate
underF liessubstantially outsidethe mean function band
underM or it does not follow the general pattern shown
by the model smooths, thenM is called into question. If,
no matter what the functionh is, the mean function esti-
mate underF liesbroadly insidethe mean function band
underM and it follows the general pattern shown by the
model smooths, then perhapsM provides an accurate de-
scription of the conditional distribution ofy|x and is a
useful model.

The binary logistic regression model can be written

yi|(xi, pi) ∼ Bernoulli(pi)
pi = Pr(y = 1|xi) = E(y|xi)

logit(pi) = log
(

pi

1− pi

)
= θTxi

One possible prior for this example isθ ∼ N(0p, kIp),
wherek can be set to reflect the degree of prior uncer-
tainty for any particular dataset. It is not possible to sam-
ple directly from the posterior, so instead Markov chain
simulation can be used to obtain the samples. In particu-
lar, posterior samples can be obtained by Gibbs sampling
using “BUGS” software (Spiegelhalter, Thomas, Best,
and Gilks, 2000). Checking convergence in Markov
chain sampling is very important, and software is avail-
able from various sources to assist in this task, for exam-
ple, some software that works well with BUGS output is
“BOA” (Smith, 2000).

Constructing a BMMP for the mean in direction
h requires model-free and model-based estimates of
the mean function with respect toh. To obtain the
model-free estimatêEF(y|h), smooth the data{yi} on
{hi}. To obtain the model-based estimatesÊMθt

(y|h),
smooth the fitted-values based on the posterior samples
{EMθt

(y|xi)} on {hi}. The fitted values corresponding
to posterior samplesθt are

EMθt
(y|xi) = pit =

1
1 + exp(−θT

t xi)
i = 1, . . . , n; t = 1, . . . , m



The BMMP equivalent to Figure 2 is shown in Fig-
ure 3. In this plot, the prior uncertainty parameter,k,
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Figure 3: BMMP for the mean,h = Mitos, model 1.

was set to be106, the smoothing splines have four ef-
fective degrees of freedom, andm = 100. Here, the
black smooth of the data lies below the gray band of the
fitted probability smooths for values ofMitos three or
higher.Mitos clearly adds information on the probabil-
ity of being benign not provided by the five predictors
in the model. This plot, in contrast to a residual plot,
can be interpreted straightforwardly, incorporates model
uncertainty, and provides guidance on model improve-
ment. Recall that the Waldp-values for adding one more
predictor to the model were each greater than 0.05; the
BMMP tells us that we should not be so hasty in not
considering addingMitos because of this. So, let’s add
Mitos to the model to see what happens.

Model 2: Six predictors (five from model 1 plusMitos).

For this model, the BMMP for the mean withh = Mitos
is the upper plot of Figure 4. In this plot, the smooth-
ing splines again have four effective degrees of freedom.
This plot shows a big improvement over Figure 3, so it
appears that addingMitos to the model is useful. How-
ever, recall that aseriesof BMMPs needs to be consid-
ered in order to be confident in the model. So, how about
the BMMP for the mean withh = the linear fit from the
model? This is the lower plot of Figure 4. In this plot,
the smoothing splines have twelve effective degrees of
freedom—increased flexibility in the smooths is needed
to fit the “logistic curve” shape of the fitted probabilities.
The black smooth of the data lies mostly inside the gray
band of the fitted probability smooths, but it gets very
close to the edge of the band at one point. The model
appears to fit most of the data very well, but has trouble
with cases “in the middle” when the linear fit is close to
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Figure 4: BMMP for the mean, model 2:h = Mitos
(upper) andh = the linear fit (lower).

zero. Should we worry when the data smooth is close to
the edge of the “band” of model smooths in places as it
is in this plot? The answer to this question is probably
context dependent. Nonetheless, BMMPs have taken us
much further in model assessment and understanding for
this dataset than either residual plots or MMPs.

4 Discussion

BMMPs offer a quick and easy way to check models
graphically. The sampling needs to be done only once
for each model and cycling through BMMPs in a variety
of directionsh provides guidance on the fit of the model.

A discrepancy measure could perhaps provide a use-
ful numerical complement to a BMMP to aid its inter-
pretation. Discussion of a discrepancy measure based on
the average squared distance between the model smooths
and the data smooth is given in Pardoe (2001a).



BMMPs utilize nonparametric scatterplot smoothers,
and cubic smoothing splines and loess smoothers each
perform well. However, care must be taken to select the
smoothing parameter so that a truthful representation of
the patterns in the BMMP is obtained. Further discus-
sion of this issue, including simulation work, is given in
Pardoe (2001a). Other smoother methods, including ker-
nel smooths and Friedman’s “super smoother,” perform
less well. The actual number of samples used to create
the BMMP does not appear to have a large impact on this
methodology, so there would appear to be no need to use
any more than 100 samples for each plot; nevertheless,
using any less than 100 would likely lead to poor resolu-
tion in the plots and make interpretation difficult.

The example considered here adopted Rubin’s ap-
proach using posterior sampling. BMMPs based on
Box’s approach using prior sampling can be constructed
similarly, although their interpretation is a little different.
An intermediate approach using cross-validation/jack-
knifing ideas might also be useful, although implementa-
tion becomes trickier computationally.

Details for other types of regression model, such as
linear and additive models, follow from the discussion
for the binary logistic model. Other models, e.g. survival
models, time series models, and random effects models,
could no doubt benefit from the application of the ideas
in this paper. One strength of the BMMP methodology
is that it would appear to be broadly applicable toanyre-
gression situation, with just the details of obtaining sam-
ples and constructing the actual plots to worry about.

In addition, there are other plots used in the area of re-
gression diagnostics that can be difficult to assess relative
to the variation in the data. Examples include residual
plots; CERES plots, which are a generalization of partial
residual plots; and net-effect plots, which aid in assess-
ing the contribution of a selected predictor to a regres-
sion. The ideas discussed above would appear to have a
rôle to play in the analysis of such plots.

S-PLUS and R functions have been developed that
can be used in conjunction with BUGS and BOA to con-
struct BMMPs for the mean in any user specified direc-
tion h. The software is available at:

http://lcb1.uoregon.edu/ipardoe/
research/bmmpsoft.htm

and further details are provided in Pardoe (2001c).
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