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We thank the discussants for their contributions. We think that they have greatly
enhanced the value of our article by providing additional insights into our study
and raising challenging questions about the choices we made during our analysis
and alternative paths we could have taken. Our thanks also go to the executive
editor and to the coordinating editor for organizing this discussion.

Space does not allow us to fully respond to all of the points raised by the
discussants, so we restrict our comments to issues of disagreement or where
elaboration would seem to be useful. Since many of the issues raised by the
discussants overlap, we organize our rejoinder by theme rather than by discussant.

1 Bayesian modeling and choice of priors

As Professor Zaslavsky notes, hierarchical modeling and Bayesian modeling are
not synonymous, and we could have approached this analysis from a frequentist
perspective—maybe Professor De Leeuw would have preferred it if we had. Given
our particular skills and experience, however, this would have been far from
straightforward for us to accomplish, and—as remarked by Professor
Browne—the Bayesian approach, at the very least, provides a relatively easy way
to bolt-on a missing data imputation procedure and to produce posterior
simulations that prove very useful in graphically assessing the model fit and
interpreting results.
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Our decision to follow the Bayesian path was therefore driven more by practical
than philosophical concerns. Having embarked on this route, the familiar obstacle
of prior sensitivity, specifically for the random effects covariance maltixX, lays
squarely in the way. De Leeuw would have us tackle this issue by adopting Wong
and Mason’s original empirical Bayes approach. This is quite possibly an
excellent solution for those well-versed in the EM-algorithm, since Wong and
Mason’s 1985 article uses just such an approach to estifmateHowever, it

would take an adept programmer more fearless than ourselves to tackle the
computations. Given the size of the dataset and the (relative) complexity of the
model, a programming language such as C or Fortran would surely be needed. By
contrast, the programming needed for the fully Bayesian approach in WinBUGS is
reasonably straightforward, even if implementation is a little on the slow side
(more on this later).

We followed standard guidance (provided in WinBUGS documentation) in using a
conjugate Wishart prior foF !, which is parameterized in WinBUGS with a
matrix R that can be considered a prior guess for the medi dfand degrees of
freedom that can be considered an equivalent prior sample size. With little prior
knowledge to go on, a prudent approach seemed to be setting the degrees of
freedom as small as possible (the rank?)f and picking reasonable values for the
variances and covariances of the random effects (we picked ten for each variance,
and zero for each covariance). We then performed an admittedly limited sensitivity
analysis with two alternative choices f&, and noted little change in the main
results. We did however fail to quote any estimatedTor in the article—the

estimate of the variance of the first random effect (the “intercept”) was 1.5, with
the remaining diagonal elements of the posterior medh 6franging between

0.0 and 0.5. The off-diagonal covariances were mostly intBe? to 0.2 range.

2 Missing data

We welcome the advice provided by Browne and Zaslavsky on improving our
missing data imputation methods. Having been conditioned to be wary of “double
use” of data, it had not occurred to us to use the response to help impute missing
covariates. And, at the time, using county-level information for individual-level
imputation had seemed like one added complication too many. Inspired by the
discussants, however, we investigated the following enhancements to the missing
data imputation described near the end of Section 4:

e useY as a predictor in each of the missing data models

e UseCPCTAA as a predictor in one of the county-level regressions by modeling
0¢ as a random intercept in the missing data model sanck (since there is
high correlation between these two covariates across counties)

e similarly, useCUNEMP in the model fon ACTCJS

e similarly, useCUNEMP in the model forlPPRIS



MCMC convergence was a little slower with this more complicated imputation,
but there was a clear improvement in the fit of the missing data distributions.
There was little change for most of the results of Table 2 (posterior means
changing by up tat0.1), but there were some larger differences in the results for
IPPRISand its interactions (e.g. the estimated main effect increased from 1.7 to
2.3). This illustrates that there may have been scope for improving results for
covariates with substantial missing datafRrishad the most missing data of all
the individual-level covariates).

3 Model selection

Browne and De Leeuw both mention what was to us probably the most
challenging aspect of the data analysis. With so many individual-level covariates,
county-level covariates, and individual-county interactions, it is hard to know
where to start with variable selection. We did experiment with various ad-hoc
procedures for reducing the number of interactions in the model, but were
dissuaded from this approach by referees’ comments on an earlier version of the
article. As suggested by Browne, reversible jump MCMC methods can be used to
guide model selection. However, given the somewhat ponderous nature of
WInBUGS (the final model run described in the article took on the order of 24
hours to run on a reasonably fast personal computer), this was impractical for this
dataset.

We ultimately decided to keep all possible individual-county interactions

(although not, as noted by Browne, individual-level interactions) and let the
analysis sort out important effects from unimportant ones. This seemed to us far
less dangerous than fixing certain interaction effects at zero by excluding them
from the model. De Leeuw’s concern that there may be many qualitatively
different models with approximately the same fit does not seem to be borne out by
our experience. The reduced models that we did experiment with (not reported in
the article) each gave very similar results to the final (reported) model.

Of course, deciding which covariates and interactions to include presupposes that
you have all the relevant data from which to make your choice—Zaslavsky
provides a nice discussion of this point. As with many analyses of this nature, the
time spent researching and obtaining relevant data for this study is not reflected in
the column-space devoted to this issue in the article. We can perhaps add a few
more details here though.

When considering which contextual covariates to include in our models, we faced
the dual challenge of identifying indicators for complex, sometimes
multidimensional, constructs and then actually obtaining the indicator for the
relevant period (i.e., 1998). For example, in the case of the concept “economic
circumstances,” we contemplated using either a county’s poverty level or its level



of unemployment. We chose to include the latt@uEMP) in our analyses, as it

is used in a plurality of contextual sentencing studies and prior research
comparing prison use across jurisdictions. We would have considered using an
alternative indicator—economic inequality as gauged by the Gini index—had we
been able to obtain it at the county level for 1998. Our decision-making process in
regard to the other factors was similar; the other five contextual covariates were
included on the basis of their availability and the fact that they were favored in
prior relevant research. Of course this is not to suggest that the resultant model
specifications are ideal; as we indicate in Section 7, there are several contextual
covariates that, for various reasons, we were unable to incorporate in our models.

Browne extols the virtues of the DIC diagnostic for comparing models, and we
wholeheartedly concur. This methodology came to our attention too late for the
original analyses, but we have now been able to apply this diagnostic to our data
analysis. The relevant calculations are particularly easy when using Bugs.R
software (Gelman, 2004) as an interface between WinBUGS and R (R
Development Core Team, 2004)—for example, the final model reported in the
article has a DIC value of 52,857. For comparison, the model that excludes the
five interactions with the highest coefficients of variation has a DIC value of
52,803, suggesting a slightly better fit for this reduced model. We may have been
able to use the DIC diagnostic in this way to reduce the number of interactions in
the model, although, as indicated above, computer-time limitations would have
made this difficult to implement in anything other than an ad-hoc manner.

Browne also wondered whether much was gained by using all 13 sets of random
effects rather than just a random intercept. Indeed, the model with just a random
intercept (but including all the individual-county interactions present in the final
model in the article) does appear to provide a comparable fit, with a DIC value of
52,695. Results for this simpler model were very similar to those in Table 2. In
retrospect then, this simpler approach may have been better, although it appears
that no harm was done with the more complicated approach described in the
article.

4 Variance components and explained variance

Browne notes how estimates Bf ' can be helpful in discerning the importance of
the county in partitioning explained variance between the different levels of the
model; Zaslavsky also discusses the importance of this issue. Recent work in
Gelman and Pardoe (2004b) proposes a new approach to defining explained
variance at each level of a multilevel model based on comparing variances in a
single fitted model rather than comparing to a null model (as previous methods
have done). Application of this method to this application produces explained
variance (22) measures of 40% at the individual-level, and between 19% and 82%
for each of the county-level models (equation (2) in the article)—see Figure 1.



Fig. 1. Measure of explained variation{Ror each of the county-level models.
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So, for example, the county-level covariates explain almost 40% of the variation
(in sentencing) among counties, while they explain about 60% of the systematic
variation in the gender effects across counties.

Zaslavsky also goes on to note that it can be useful to describe the difference
between predictions for observations at low and high values of a covariate, with
other covariates fixed at their means. This concept is related to work in Gelman
and Pardoe (2004a) which proposes methodology for calculating the expected
change in an outcome measure associated with a unit change in one of the
predictors, for models with nonlinearity, interactions, and variance components.

5 Does a hierarchical approach work here?

De Leeuw wonders whether all our endeavors were in vain—would a standard
logistic regression analysis have worked as well, and have we really moved our
understanding of sentencing variation in the U.S. forward, or just left it more
confused than ever? Browne and Zaslavsky offer some welcome encouragement
here, and the model assessment carried out in Section 5 provides further support
that our analysis may be useful (the article referenced here—Pardoe 2004—also
shows quite clearly that a standard logistic regression analysis of this dataset is
flawed).

What then of the impact on the field of sentencing. Fortunately, one of us could be



considered an expert in this area, and rather than throwing our arms up in
desperation, we believe a more measured, optimistic appraisal is warranted. To our
knowledge, there is only one published study that, like ours, uses multilevel
modeling to consider the effects of contextual and case-level factors on individual
sentence outcomes using a sample of cases from multiple jurisdictions located in
states in every region of the country. This novel research strategy can be seen as an
improvement upon prior sentencing studies for two key reasons. First, it allows us
to circumvent a critique that can be made of the vast majority of sentencing studies
which are based on a single jurisdiction: focusing on a single jurisdiction runs the
risk of arriving at results that are the product of idiosyncratic features that may not
be representative of other courts from a similar jurisdiction or state. Second, this
national sample allowed us to account for geographic region—a factor which has
been extensively considered in studies explaining interjurisdictional differences in
prison use, but up until now has been absent from contextual sentencing studies.

Thus, when viewed in relation to the cumulative body of sentencing research,

these characteristics could be seen as distinct advantages which at least partially
mitigate some of the concerns that De Leeuw expresses. It is undeniable (and
inevitable) that our modeling technique, sample, and analytic choices vary from
other studies. Yet, these would not seem to be reasons for chagrin, given that no
single social scientific study can conclusively answer the questions that it poses.
Most scientists would surely agree that one study does not make a body of
evidence. However, we believe that this study clearly demonstrates that the type of
sentence one receives and the reason one receives it partially depend on where it is
meted out.
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