Multidimensional Scaling for Selecting
Small Groups in College Courses

Tain PARDOE

Many college courses use group work as a part of the learning and
evaluation process. Class groups are often selected randomly or
by allowing students to organize groups themselves. However,
if it is desired to control some aspect of the group structure,
such as increasing schedule compatibility within groups, mul-
tidimensional scaling can be used to form such groups. This
article describes how this has been adopted in an undergradu-
ate statistics course. Resulting groups have been more homo-
geneous with respect to student schedules than groups selected
randomly—an example from winter quarter 2004 increased cor-
relations between student schedules from a mean of .29 before
grouping to a within-group mean of .50. Further, the exercise
allows opportunities to discuss a wealth of statistical concepts
in class, including surveys, association measures, multidimen-
sional scaling, and statistical graphics.
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1. INTRODUCTION

I have used group work in my undergraduate statistics course
for a number of years, and have found it to be a useful method
for improving student learning by raising student interest and in-
creasing class participation. As well as working together during
class time, students work extensively together in groups out-
side of class on homework assignments and projects. In manag-
ing small groups in the classroom—in my case groups of 3-5
students in a class of approximately 60—I have experimented
with various ad-hoc methods for selecting the groups, each of
which have had their drawbacks. For example, randomly select-
ing groups has led to frequent student complaints that they have
difficulties meeting as a group outside of class time due to in-
compatible schedules. On the other hand, allowing students to
self-select groups has tended to produce groups of friends in
which there is very little diversity (gender, age, and ethnicity, as
well as academic ability). In an attempt to balance the conflicting
goals of selecting groups whose members have mostly similar
schedules while at the same time maintaining group diversity,
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I have developed a method for using multidimensional scaling
(MDS) to accomplish this task.

The use of small groups in college courses stems from the con-
cept of cooperative learning, whereby groups of, say, three to five
students work together as a team to solve a problem or complete
an assignment [see Garfield (1993); Giraud (1997); Keeler and
Steinhorst (1995); and Magel (1998) for examples in the field
of statistics]. The National Council of Teachers of Mathemat-
ics (2000) and the National Research Council (1989) advocated
cooperative learning in elementary and secondary education,
while Johnson, Johnson, and Smith (1991) and Garfield (1993)
extolled the virtues of cooperative learning in the college class-
room. Johnson et al. (1991) showed that when students work
together, they often accomplish more, and at a higher level, than
they could individually. Garfield (1993, par. 8) cited published
research that suggests that “the use of small group learning ac-
tivities leads to better group productivity, improved attitudes,
and sometimes, increased achievement.”

With reference to the question of how to select cooperative
learning groups, Garfield (1993, par. 18) noted that “the instruc-
tor may allow students to self-select groups or groups may be
formed by the instructor to be either homogeneous or hetero-
geneous on particular characteristics (e.g., grouping together all
students who received A’s on the last quiz, or mixing students
with different majors).” The remainder of this article describes
how to use MDS to select groups to be homogeneous on student
schedules. The method also enables inclusion of further criteria
for group selection, such as making sure that each group has at
least one member with a particular skill. The method is described
in sufficient detail that it can be applied to any course in which
cooperative learning groups are used, and can easily be adapted
to work with characteristics other than student schedules.

The next section briefly describes MDS and how it can be ap-
plied to the problem of grouping students with similar schedules.
The following section presents results from my undergraduate
course in the winter quarter of 2004 and an evaluation of how
well the method worked. Presenting and evaluating the results
also provides valuable opportunities for covering a number of
statistical concepts in class, including surveys, association mea-
sures, multidimensional scaling, and statistical graphics. The
final section contains a discussion.

2. MULTIDIMENSIONAL SCALING FOR
SELECTING GROUPS

MDS is a series of methods for displaying a set of objects in
low-dimensional space (often 2D) that reflects similarities be-
tween the objects (see Kruskal and Wish 1978 for an overview).
MDS results can be used to create a 2D map where the physical
distances between the objects on the map are meant to corre-
spond closely with the measured object similarities. The input
to the procedure is a matrix representing pairwise similarities
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Figure 1. Online survey for collecting student information including schedule availabilities.

or proximities between the objects. This matrix can be obtained
directly, for example in marketing surveys where consumers
compare products by ranking or rating their similarities, or in-
directly, by calculating an association measure for the objects
based on the values of one or more covariates. For this applica-
tion, the goal is to identify groups of students that have similar
schedules, so the latter approach using calculated associations
between students based on their schedules is appropriate.

For a metric MDS analysis (Torgerson 1958)—when the sim-
ilarity measures are interval- or ratio-scaled—an eigenvalue de-
composition of (a transformation of) the matrix of similarity
measures provides the coordinate locations of each object on
the map. This approach derives from the geometric relationship
between the scalar product of a pair of vectors (representing two
objects in the dataset) and the distance between the objects. The
eigenvalue decomposition solves for the scalar products between
all pairs of objects, which in turn represent the map coordinates
of the objects. Similar to a principal components analysis of a
covariance matrix, the first eigenvector represents the first coor-
dinate axis (which exhibits the largest variance in distances), the
second eigenvector represents the second coordinate axis, and
so on. When, as is often the case, the first two eigenvalues ac-
count for the bulk of the variance in the distances, a 2D solution
is adequate for mapping the objects effectively.

When the similarities are ordinal measures, a nonmetric MDS
analysis (Shepard 1962) is more appropriate. Nonmetric MDS
places the objects on the map to preserve a monotonic relation-
ship between the observed similarities and the distances calcu-
lated from the map. A measure of “badness of fit,” or “stress,”
summarizes how far a proposed solution is from the desired
monotonic relationship, and then a numerical algorithm recon-
figures the coordinates of the objects to iteratively minimize the
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stress measure. Although a goal of both metric and nonmetric
MDS analyses is to produce maps that effectively represent simi-
larities between objects, they operate on different data scales and
use fundamentally different approaches to accomplish this task.

Because it is possible to calculate a ratio-scaled measure of
association between student schedules, as shown in the follow-
ing, a metric MDS approach is appropriate in this application.
The process for mapping students using a metric MDS based
on their schedules begins with collecting relevant data. Sched-
ule information can be obtained in a number of different ways,
including pen-and-paper surveys, e-mail (with or without an at-
tached spreadsheet to enter data), and online surveys. In a statis-
tics class there is clearly an opportunity here to engage the class
in a discussion of data collection techniques and surveying. For
the undergraduate statistics course that I teach, I ask the students
to complete an online survey before the second class of the quar-
ter. Tuse WebSurveyor software—see www.websurveyor.com—
which makes this process particularly easy, resulting in a spread-
sheet containing the student data. Figure 1 shows a screenshot of
the part of the survey that is relevant to this article (I also collect
contact information so that once groups are formed, students
have all the information they need to work together effectively).

I ask the students to “select the time periods when you ab-
solutely cannot meet with your group because you are in class,
work, or other scheduled activity for most or all of the period
during the quarter.” I use two-hour time periods between 8:00
a.m. and 10:00 p.m. for all days including weekends; this seems
to provide a reasonable compromise between survey burden and
information quality. The resulting spreadsheet records a row of
zeros and ones for each student showing when they are available
and unavailable to meet for group work outside of class time.
This spreadsheet also records a unique identification number for
each student, and binary indicators for whether a student con-
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Figure 2. Perceptual map showing the students labeled by identification number and marked according to whether they have computing/analytical
skills (circles = no; crosses = yes). Physical distances between the students on the map are meant to correspond closely with the similarities between

their schedules. The ellipse shows an example of a selected group.

siders themselves to be “good with computers” and “good at
analytical thinking.”

Administering the survey and explaining its purpose provides
a number of opportunities for discussing statistical concepts in
class, for example, how to measure the similarity of one student’s
schedule with another. This naturally leads to the notion of an
association measure, in this case for data that can be summarized
in atwo-by-two contingency table: the two row categories are the
counts of the available/unavailable designations for one student
while the column categories do the same for another student. For
example, a typical table for a pair of students is the following:

Student A
Available  Unavailable
Student Available 27 7
B Unavailable 9 6

One way to measure association in this table is to look at
a scaled difference between concordant pairs of time periods
(where students match and are either both available or both un-
available) and discordant pairs (where students do not match)—
Kendall’s 7;, (Kendall 1945) is one such quantity:

P-qQ
(P+Q+ Xo)(P+ Q + Yp))¥/%’

Ty =

where P is the number of concordant pairs (27 X 6 = 162
for the table above), @ is the number of discordant pairs (7 x
9 = 63), X is the number of pairs tied on “Student A” (27 x
9+ 7 x 6 = 285), Yp is the number of pairs tied on “Student

B” (27 x T4 9 x 6 = 243). Thus, 7, for the pair of students
in the table above is 99/(510 x 468)'/2 = .203. For two-by-
two tables, Kendall’s 7, is algebraically the same as the usual
(Pearson product-moment) correlation between each student’s
availabilities, and so this might usefully lead into a discussion
of bivariate correlation in more general situations.

Returning to the group formation task, statistical software
can then be used to perform an MDS analysis. I use SAS soft-
ware, although many other common software packages could
be used. The SAS code used in this article is available at
Icb1.uoregon.edu/ipardoe/research.htm. In particular, I first use
proc corr to produce a matrix of correlations representing
pairwise similarities between students’ schedules. I then trans-
form these correlations into differences by subtracting from one.
These differences are now a ratio scale ranging from zero (iden-
tical schedules) to two (completely mismatched schedules). I
next use proc mds (with option level = ratio) to perform a
metric MDS analysis. Depending on the type of course, it may
be appropriate to devote some class time at this point to delve
deeper into MDS; for example, discussing differences between
metric MDS and nonmetric MDS.

Output from the MDS procedure can then be used to create
a 2D map where the physical distances between the students
on the map are meant to correspond closely with the similari-
ties between their schedules. Figure 2 provides an example of
such a map for the 58 students in the undergraduate statistics
course that I taught in winter quarter 2004. Students are labeled
by their assigned identification numbers, and I have also used
different plotting symbols to distinguish students claiming to
have computing or analytical skills from those that do not. All
that remains is to use this map to determine the groups. I have
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found that it is usually sufficient to print the map out, and then,
by eye, delineate boundaries between groups such that there are
four or five students in each group, and each group has at least
one member claiming to have computing or analytical skills. A
more formal clustering technique might be used at this point—
providing another opportunity to introduce a statistical concept
into class—but I have found little need to venture beyond infor-
mally eyeballing the map.

3. RESULTS FROM WINTER QUARTER 2004

Because the map in Figure 2 represents similarities between
students’ schedules (at least to the degree that the MDS analy-
sis has been successful at representing high-dimensional data in
two-dimensional space), using the map to select groups ought to
produce more homogeneous groups than selecting groups ran-
domly. For example, I used the map to place students 6, 37,
46, and 51 together (see Figure 2)—they should be expected to
have more similar schedules than four students selected purely
at random. In fact their within-group correlations (the (;1) =6
correlations of pairs of students within the group) ranged be-
tween .5 and .8, whereas the (528) = 1,653 correlations across
the whole class went as low as —.5.

To evaluate the success of the group selection process, I there-
fore considered this question in more detail. One way to sum-
marize the effectiveness of the process, and which also provides
a useful lead-in to discussing graphical summaries in class, is
to compare the empirical distribution of schedule correlations
for all pairs of students with the empirical distribution of cor-
relations within the final selected groups. Figure 3 displays the
resulting histograms using common axis scales to ease compar-
ison.

The distribution of correlations clearly shifts to the right, so
within-group correlations tend to be higher than correlations
across the class as a whole. In terms of numerical summary
statistics, the within-group correlations in the lower histogram
average to .50, while the all-pairs correlations in the upper his-
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Figure 3. Histograms of correlations before and after forming groups.
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togram have amean of .29. There are relatively more correlations
at the high end of the scale in the lower (grouped) histogram, and
so in the most homogeneous groups (which tend to be the ones
comprised of very tightly clustered students in Figure 2), sched-
ules match remarkably well. However, while the very low end
has been removed (no within-group correlations below —.1),
there are some students with schedules that match few others
in the class, making it difficult to place them in a homogeneous
group. For example, it would have been difficult to place student
28 in a homogeneous group. The optimal group from this stu-
dent’s perspective would have had a minimum correlation of .1,
and they actually ended up in the group with the lowest within-
group correlation of —.1; neither are particularly homogeneous
groups.

This last issue motivates another discussion question for po-
tential use in class—why not just try to find the optimal group
for each student? Apart from being extremely time consuming
(particularly as the class size grows), what is optimal for one
student may not be optimal for another—for example, placing
student 28 in their optimal group would have changed the group
membership of a number of other groups and greatly reduced
their homogeneity.

4. DISCUSSION

When making extensive use of small groups in college
courses, the way in which the groups are selected can impact
operational aspects, such as how well groups are able to sched-
ule times to meet, as well as personal characteristics, such as
student diversity within groups. To avoid problems that can
arise when groups are randomly assigned or students are al-
lowed to self-select, the process described in this article uses
multidimensional scaling for selecting groups that aims to in-
crease scheduling homogeneity within groups without reducing
diversity. The approach has worked successfully in classes in
which I have adopted it, and student feedback has been very
favorable. In theory, within group diversity remains as high as
for random group selection, although to the extent that “simi-
lar students” have similar schedules, this may not strictly hold
in practice. The approach can also take into account additional
student characteristics, such as making sure each group contains
at least one student with a particular skill. The method as de-
scribed uses Pearson correlations (equivalent to Kendall’s 73 in
this case) to calculate student schedule similarities, but it should
be possible to adapt the method to use alternative association
measures; for example, if it was desired to consider matches on
times when students can meet as more important than matches
on times when students cannot meet. An added benefit, when
applied to statistics courses, is that the approach offers many
opportunities for exploring statistical concepts in class.

I'have focused on using the approach to enhance within-group
schedules, but the approach is general enough to consider other
characteristics too, such as student grades or majors (as men-
tioned by Garfield 1993), or skills. For example, suppose it is
desired to form groups in which students have a wide variety
of skills and competencies (such as analytical, writing, orga-
nizing, public speaking, leadership, computing, detail-oriented,
good with “big-picture,” etc.). Scores (from 1 to 10, say) on each
of these skills can be obtained via a student survey, and then a
metric MDS analysis can be based on pairwise correlations be-



tween student scores. In this case, the goal would be to group
students with negative correlations so that each group has a good
mix of skills. Thus, the appropriate differences matrix to be an-
alyzed would comprise “correlations plus one”—values close
to zero would correspond to students with very different skills
who could benefit from being placed in the same group, while
values close to two would correspond to students with similar
skills who could benefit from being placed in different groups.

The general approach does involve some start-up costs. These
include: collecting the relevant information from students (e.g.,
scheduling information provided through an online survey); an-
alyzing the data (e.g., using proc mds in SAS to create a map
of students in which those close together have similar schedules
and those far apart have very different schedules); using the map
to select groups (for example, informally clustering the students
by eye). Once the survey and SAS code have been written how-
ever, it is easy to implement the approach for any class where
homogeneous groups need to be formed.
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