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Abstract

This paper extends the Bayes marginal model plot (BMMP) model assessment technique

from a traditional logistic regression setting to a multilevel application in the area of

criminal justice. Convicted felons in the United States receive either a prison sentence or a

less severe jail or non-custodial sentence. Researchers have identified many determinants

of sentencing variation across the country, some individual such as type of crime and race,

and some based on geographical units such as county crime rate. Multilevel rather than

conventional regression should be used to quantify any interplay between such

individual-level and county-level effects since the covariates have a hierarchical structure.

Questions arise, however, as to whether a multilevel model provides an adequate fit to the

data, and whether the computational burden of a multilevel model over a conventional

model is justified. Residual plots, traditionally used to assess regression models, are

difficult to interpret with a binary response variable and multilevel covariates, as in this

case. BMMPs, an alternative graphical technique, can be used to visualize goodness of fit

in such settings. The plots clearly demonstrate the need to use multilevel modeling when

analyzing data such as these.
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1 Introduction

In 2001, the United States imprisoned its citizens at a rate of 470 per 100,000, six

to twelve times higher than in other western countries. Furthermore, there is large

variation in imprisonment levels within the U.S. For example, in 2001, Louisiana’s

rate per 100,000 residents was 800, while Maine’s was 127 [6, p. 4]. Studies of

differences in prison use among the states have found various factors to play a key

role, including: higher levels of crime [8], in particular violent crime [5]; percent

of the population that is African American [8]; political conservatism [19,5]; and

geographic region—Southern states appear to punish more severely [11]. There is

also some empirical evidence of a relationship between state sentencing schemes

and levels of incarceration, since such schemes often dictate which types of

offense warrant prison time [22]. Other studies examining aggregate punishment

variation using a county as the unit of analysis have found unemployment in urban

counties and violent crime [7], and percent of the population that is African

American and Southern region [20] to be significantly related to prison use.

By contrast, most sentencing studies focus on individuals, whereby effects of case

characteristics, criminal history, and demographics are determined. However,

effects of individual-level variables may vary according to the cultural, political,

economic, and social contexts in which courts operate [3]. Studies of pooled

statewide data have found several contextual variables to have an effect on

sentencing, such as level of unemployment and crime rate [12] and racial

composition [19]. However, these studies use conventional logistic regression

which does not correctly account for individual-level effects that vary according to

a jurisdiction’s cultural context and organizational constraints [1,9]. To properly

account for the hierarchical nature of individual-level covariates and county-level

contextual covariates, multilevel modeling is more appropriate.

There has been some previous use of multilevel modeling in criminal justice

research. For example, Ref. [17] uses a multilevel model for intra-city
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neighborhood differences in victimization risk, while Ref. [23] compares

multilevel and conventional models for the impact of prison and inmate

characteristics on misconduct. Ref. [1] investigates whether social context and

racial disparities affected punishment decisions in Pennsylvania counties for

1991-1994. Controlling for urbanization, racial threat, economic threat, and crime

control, punishment severity varies by race across jurisdictions, but measures of

social context explains little of this variation.

Ref. [14] analyzes data from the Bureau of Justice Statistics’ State Court

Processing Statistics (SCPS) program, a biennial collection of data on felony

defendants in state courts in 39 of the 75 most populous U.S. counties. That study

uses the multilevel logistic regression model described in Section 3. Given the

lack of consensus regarding determinants of variation in prison use, it is important

to assess the fit of this model before it is used to inform policy. Furthermore, from

a practical viewpoint, it is useful to gauge the relative worth of going beyond a

conventional (non-multilevel) model with this more computationally intensive

multilevel model. Theoretically, the “independent errors” assumption for a

conventional model is violated with data having this hierarchical structure, but

such a violation might be considered to be of little consequence if the model fits

essentially as well as the multilevel model, and if results and conclusions are

similar.

Ref. [13] describes a graphical technique for assessing the fit of a logistic

regression model, called a “Bayes marginal model plot” (BMMP). The remaining

sections of this paper describe an extension of the BMMP technique to assess the

fit of the multilevel logistic regression model used in Ref. [14]. Section 2

describes the U.S. imprisonment data used, while the multilevel model employed

is outlined in Section 3. Section 4 concerns assessment of the model using

BMMPs, and compares the fit of a similar conventional model. The two models

result in very different conclusions for this dataset, and the model assessment plots

clearly show that the multilevel model fits the data well, whereas the conventional

model fits poorly. Section 5 contains a discussion.
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2 Data

Information collected in the SCPS program includes demographic characteristics,

criminal history, and details of pretrial processing, disposition, and sentencing of

felony defendants. Ref. [14] analyzes individual-level data for 8,446 felony

convictions in 39 counties across 17 states during May 1998 linked to county-level

variables using the Federal Information Processing Standards code. The number

of individuals in each county ranged from 23 to 905, with median 186. Fourteen of

the states represented contained just one or two sampled counties, while one

contained four counties, one contained seven, and one contained eight.

In general, a jail sentence is less severe than a prison sentence, and so the factors

influencing a decision to sentence to jail are likely to be markedly different from

those affecting a decision to sentence to prison. Thus, in common with many

studies that address cross-jurisdictional differences in punitiveness, the response

variable for this study was “sentence severity”, defined asY = 1 if the offender

received a prison sentence or 0 for a jail or non-custodial sentence, rather than

“incarceration.” Table 1 provides details of the twelve individual-level and six

county-level covariates conjectured to affect sentencing severity.

[TABLE 1 ABOUT HERE]

3 Multilevel Logistic Regression

A multilevel logistic regression model, also referred to in the literature as a

hierarchical model, can account for lack of independence across levels of nested

data (i.e., individuals nested within counties). Conventional regression assumes

that all experimental units (in this case, individuals) are independent in the sense

that any variables affecting sentencing severity have the same effect in all

counties. Multilevel modeling relaxes this assumption and allows these variables’

effects to vary across counties. One way to do this uses a generalization of the
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model developed in Ref. [21]. First, each group ofnj individuals withinJ = 39

counties is assumed to follow a county-specific logistic regression model. For the

ith individual in thejth county, observe a binary response,

Y ij =





1 for a prison sentence

0 for a jail or non-custodial sentence

Y ij|pij ∼ Bernouilli(pij), wherepij = Pr(Y ij = 1), and

logit(pij) = log

(
pij

1− pij

)
= XT

i βj (1)

whereXi represents measurements onK individual-level variables andβj

consists ofK regression coefficients (specific to thejth county). Next, since each

β-coefficient is likely to be related across counties, assume that each one can be

explained by up toL county-level variables,

βj = Gjη + αj (2)

whereGj is aK ×M block-diagonal matrix of measurements onL county-level

variables,η consists ofM regression coefficients, andαj is aK × 1 vector of

county-level errors. In particular, thekth row ofGj contains a non-zero block with

a one for an intercept together with the county-level variables used to explain the

kth β-coefficient. Thus,M is K × L if all county-level variables are used to

explain eachβ-coefficient, or less than this otherwise. Combining (1) and (2) leads

to

logit(pij) = XT
i Gjη + XT

i αj (3)

Conventionally, theη-parameters in (3) are fixed effects (they have no j-subscript

and represent the same effect over all counties) while theα-parameters are random

effects (they have a j-subscript and represent different effects across counties). The

presence of both types of effects makes (3) a mixed model. Suppressing the

county-level errors so that (3) becomes a fixed effects model and amenable to

standard regression requires assuming that individual-level effects are the same

across counties, an assumption unlikely to be satisfied in practice.
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Mixed models can be fit using specialized software such as “MLwiN” [15] and

“HLM” [16]. Alternatively, by putting the model into a Bayesian framework, the

distinction between fixed and random effects disappears (since all effects are now

considered random), and the hierarchical structure is explicitly accounted for in

the analysis. Ref. [14] follows this Bayesian route, givingη independent,

zero-mean, normal priors with variances of 10 for the interactions and 100 for the

main effects. An exchangeable prior was used for the county-level errors,

αj ∼ N(0,Γ−1), where0 is aK-vector of zeros andΓ−1 is aK ×K covariance

matrix. A hyper-prior distribution was specified for the inverse covariance matrix,

Γ ∼ Wishart(R, K), whereR can be considered a prior estimate ofΓ−1 based on

K observations, and, to represent vague prior knowledge, degrees of freedom for

the Wishart distribution was set as small as possible to beK (the rank ofΓ). R

was set to have values ten along the diagonal and zero elsewhere (sensitivity

analysis, discussed in Ref. [14], confirmed that the choice ofR has little effect on

the results).

The software packageWinBUGS [18] was used to generate posterior samples for

η andαj; this free software enables Bayesian analysis of complex statistical

models using Gibbs sampling, a Markov chain Monte Carlo (MCMC) technique.

Since there are 3,876 cases with some missing data (which, based on the patterns

of missingness, it seems reasonable to assume is missing at random), additional

Gibbs steps were used to impute missing values. Further details are provided in

Ref. [14]. After running four chains for 20,000 iterations, discarding 10,000

burn-in samples, and thinning to retain every tenth sample to reduce

autocorrelation (leaving a total of 4,000 posterior samples), trace plots showed a

good degree of mixing and MCMC convergence diagnostics indicated

convergence.

Before interpreting and using posterior samples from this model, model fit and

underlying assumptions need to be assessed. Posterior samples of county-level

errors,αj, are a form of residual, and so conceivably could lend themselves to the

usual kinds of model diagnostics. For this application, the fact that they averaged

6



close to zero across counties is reassuring, but unsurprising. More open to doubt

are the normality and exchangeability assumptions, which suggests that normal

probability plots or plotting posterior means of theαj against county-level

covariates could be useful. However, since multilevel modeling shrinks theαj

estimates from individual (within-county) estimates to the population average, it is

not clear that such plots can tell us anything useful about these assumptions.

Traditional residual plots might also provide some insight into model fit, but it is

unclear how to even define a residual plot here given the hierarchical nature of the

model. Furthermore, Ref. [13] discusses how the use of residual plots can be

problematic in logistic regression settings.

Thus, each of these diagnostic methods seems insufficient to assess the fit of a

multilevel model of such complexity. Section 4 describes use of an alternative

graphical diagnostic procedure that avoids these difficulties.

4 Bayes Marginal Model Plots

Ref. [2] proposes the use of “marginal model plots” (MMPs) to assess the

goodness of fit of a regression model. Extending their rationale to multilevel

regression with covariatesX measured on units nested in clusters with covariates

G leads to:

EF(Y |X,G) = E
M̂

(Y |X,G), ∀X ∈ X ⊂ IRK ,∀G ∈ G ⊂ IRL (4)

⇐⇒ EF(Y |h) = E
M̂

(Y |h), ∀ h = h(X,G) : IRK+L → IR1 (5)

whereEF denotesmodel-freeexpectation,E
M̂

denotesmodel-basedexpectation,

X andG are the sample spaces ofX andG respectively, andh is any measurable

function ofX andG. Ideas for selecting usefulh-functions to consider in practice

are given in Ref. [2], and include fitted values, individual covariates, and linear

combinations of the covariates (for example, dimension reduction techniques can

suggest linear combinations more likely to reveal lack-of-fit). Conditional

7



expectations ofY in the logistic regression context correspond to the probabilities

pij in (1).

Ideally, model assessment requires equality (4) to be checked, but when

K + L > 2 thenE(Y |X,G) is difficult to visualize. However, ifh is univariate,

E(Y |h) can be visualized in a two-dimensional scatterplot, and equality (5) can be

checked. So, to assess the relationship betweenEF(Y |X, G) andE
M̂

(Y |X, G),

instead compareEF(Y |h) andE
M̂

(Y |h) for varioush. EF(Y |h) andE
M̂

(Y |h) can

be estimated with non-parametric smooths such as cubic smoothing splines, the

former by smoothingY versush, the latter by smoothing fitted values

(probabilities),E
M̂

(Y |X,G), versush. SuperimposêEF(Y |h) andÊ
M̂

(Y |h) on a

plot of Y versush to obtain a MMP for the mean in the (marginal) directionh.

Using the same method and smoothing parameter for both smooths allows their

point-wise comparison, since any estimation bias approximately cancels. Smooths

that match closely for any functionh provide support for the model; otherwise

model inadequacy is indicated.

However, it can be difficult to judge whether smooths match closely without

guidance on model uncertainty. Bayesian model assessment ideas in Ref. [4]

provide one way to visualize this uncertainty. Consider drawing values ofβj in (1)

from their posterior distributions, and generating a sample of realizations ofY

from the model indexed by theseβj. Repeat this process a large numberm of

times and compare the dataY-values to them (posterior predictive) realizations

from the model. Then, if the data “look like” a typical realization from the model

there is no reason to doubt its fit. On the other hand, if the data appear to be very

“unusual” with respect to them model realizations, then the model is called into

question. A graphical way to do this is to compare model-free smooths of data

Y-values with model-based smooths of predicted probabilities (calculated using

sampledβj values). So, in a Bayes marginal model plot (BMMP), instead of

superimposing just one model-based smooth, smooths form model samples are

superimposed;m = 100 provides good resolution in the plot without excessive

computing overhead.
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Figure 1 is a BMMP for the multilevel model for the imprisonment data with

h = XT
i Gjη̂ + XT

i α̂j, whereη̂ andα̂j are posterior means.

[FIGURE 1 ABOUT HERE]

If, for a particularh, the black model-free smooth liessubstantially outsidethe

band of gray model-based smoothsor it does not follow the general pattern of the

gray model-based smooths, then the model is called into question. If, no matter

what the functionh is, the black model-free smooth liesbroadly insidethe gray

model-based bandand it follows the general pattern of the gray model-based

smooths, then perhaps the model is a useful one. In Figure 1, the black smooth of

the data passes close to the center of the gray band of model-based smooths of

1/(1 + exp(−XT
i Gjη

∗ −XT
i α∗

j)), whereη∗ andα∗
j are 100 posterior samples.

So, there is little indication of lack-of-fit from this plot.

Since fitting a multilevel logistic model requires substantially more computing

time than a conventional (non-multilevel) model, it is instructive to compare

BMMPs for a conventional model containing the same terms (main effects and

interactions) as the multilevel model. If the conventional model fits essentially as

well as the multilevel model, there would be little need to go to the trouble of

fitting the latter. Furthermore, the different results produced by the multilevel and

conventional models could impact the substantive conclusions. Nevertheless, a

BMMP for the conventional model withh = XT
i Gjη̂ (plot not shown), is

qualitatively very similar to Figure 1. This is actually unsurprising since both

models give similar predictions when averaging across counties, despite having

very different posterior means forη.

However, equality (5) should also match for subsets of the data, in particular

within counties. Figure 2 contains BMMPs for one of the counties (number 13);

the upper plot withh = XT
i Gjη̂ + XT

i α̂j is for the multilevel model, the lower

plot with h = XT
i Gjη̂ is for the conventional model.

[FIGURE 2 ABOUT HERE]
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Now the conventional model clearly appears to be inadequate, while the multilevel

model continues to display no lack-of-fit. A similar assessment can be made for

comparable BMMPs for the other counties (plots not shown).

Nevertheless, a series of BMMPs for varioush-functions should be constructed to

gain confidence in any particular model. In this application, since the models

differ greatly on how county-level covariates are treated, consider the BMMPs

with h = CCONS in Figure 3.

[FIGURE 3 ABOUT HERE]

Again the conventional model appears inadequate, while the multilevel model

shows promise. Differences are also apparent for the other county-level covariates

(plots not shown).

Finally, consider a BMMP from the perspective of a county as the unit of analysis.

The dataY-values now become proportions of individuals in the counties

sentenced to prison. The model-based probabilities of receiving a prison sentence

in each county can be obtained by averaging individual probabilities. County-level

BMMPs can then be constructed withh now a function of county-level covariates,

G, only. BMMPs based on this premise withh = CBLPCT are shown in Figure 4.

[FIGURE 4 ABOUT HERE]

Again the multilevel model seems better than the conventional one. Differences

are also apparent for the other county-level covariates (plots not shown).

Using missing data imputation in fitting the model presents no additional

difficulties in using BMMPs. The technique utilizes fitted values from the model,

which were calculated for missing data cases in this application using posterior

means of the regression coefficients used for imputation. Since equality (5) should

hold for subsets of the data, BMMPs can also be constructed for just the

non-missing data cases to provide a further check on model adequacy. Such plots

for this analysis are qualitatively very similar to those above.
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5 Discussion

In conclusion, the multilevel model appears to fit the U.S. imprisonment data well,

and certainly improves on the conventional model which fits poorly. Ref. [14]

provides a detailed discussion of the results of the multilevel analysis of this

dataset.

The multilevel and conventional models produce some conflicting conclusions for

this application, so using one model over the other has important policy

implications. For example, the sum of the posterior means for theη-coefficients

for CUNEMP and theCUNEMP by ICDRUG interaction is−0.31 for the multilevel

model and 0.19 for the conventional model. The conventional model would appear

to support the notion that punishment (for drug possession offenses) will be more

severe in jurisdictions with greater proportions of individuals perceived as posing

a threat because of their economic circumstances [10], whereas the multilevel

model contradicts this. As noted by a referee however, unemployment may have

more of an effect on the incarceration decision (jail or prison) so that an analysis

with an indicator of “jail/prison” versus “non-custodial” as the response variable

may produce different results.

As a further example of conflicting results from the multilevel and conventional

analyses, the conventional model results suggest a positiveCBLPCT by IBLACK

interaction of 0.45 (indicating that African Americans may be punished more

severely in counties with higher proportions of African Americans). However, the

CBLPCT by IBLACK interaction is negligible (0.02) under the multilevel analysis,

lending support to the notion that higher percentages of African Americans in

these jurisdictions might function to increase African Americans’ political power,

making racial bias less likely [5].

This paper has demonstrated how Bayes marginal model plots (BMMPs) can be

extended to assessment of multilevel models containing random effects. Plots can

be constructed at different levels of the hierarchy, for example at the individual
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level and the cluster level. The use of these plots for the imprisonment data

illustrates the need to use multilevel modeling when covariates are measured at

different levels in a hierarchical structure.

The BMMP methodology is not limited to logistic regression, and is generally

applicable to any regression model. References to normal linear and additive

model applications can be found in Ref. [13], which also contains further

discussion of technical aspects of BMMPs such as calibration and smoothing.

S-PLUS andR functions that can be used in conjunction withWinBUGS and

BOA to construct BMMPs are available from the author’s web-site.
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Table 1

Individual-level covariates (May 1998) and county-level covariates (1998 unless specified)

IMALE 1: men, 0: women

IBLACK 1: African American, 0: otherwise

IACTCJS 1: active criminal justice status at time of offense

IPPRIS 1: prior stay(s) in state prison

IDETAIN 1: detained after being charged

IREVOKE 1: pretrial release was revoked

ITRIAL 1: convicted by trial, 0: convicted by plea

Most serious conviction charge (reference category includes weapons,

driving-related, and other public order offenses):

ICVIOL1 murder, rape or robbery (“more severe” violent)

ICVIOL2 assault, other violent crime (“less severe” violent)

ICTRAF drug trafficking offense

ICDRUG drug possession offense

ICPROP burglary or theft (property offense)

CCRIME index (known to police) crime rate per 10,000 residents

CUNEMP unemployment rate (%)

CBLPCT census estimate of African American population (%)

CCONS share of vote for Bush in 2000 (%)

CSOUTH 1: located in a Southern state, 0: otherwise

CGUIDE 1: voluntary or mandatory state sentencing guidelines, 0: otherwise
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Fig. 1. Bayes marginal model plot (BMMP) for the multilevel model with

h = XT
i Gjη̂ + XT

i α̂j . The data have been jittered to aid visualization of relative den-

sity and the smooths are smoothing splines with six effective degrees of freedom.
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Fig. 2. BMMPs for county 13;h = XT
i Gjη̂ + XT

i α̂j for multilevel model (upper) and

h = XT
i Gjη̂ for conventional model (lower). The smoothing splines have four effective

degrees of freedom. 15
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Fig. 3. BMMPs withh = CCONS for multilevel model (upper) and conventional model

(lower). The smoothing splines have four effective degrees of freedom.
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Fig. 4. County-level BMMPs withh = CBLPCT for multilevel model (upper) and conven-

tional (lower). The smoothing splines have four effective degrees of freedom.
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