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Abstract

Before a logistic regression model is used to describe the relationship between a binary
response variable and predictors, the fit of the model should be assessed. The nature of any
model deficiency may indicate that some aspect of the model should be reformulated or that
poorly fitting observations need to be considered separately. We propose graphical methodol-
ogy based on a Bayesian framework to address issues such as this. Publicly available software
allows diagnostic plots to be constructed quickly and easily for any model of interest. These
plots are more intuitive and meaningful than traditional graphical diagnostics such as residual
plots.
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1 INTRODUCTION

Cook and Pardoe (2000) suggested a graphical technique for assessing the fit of a regression model,
which they called a “Gibbs marginal model plot.” This methodology was developed for normal
linear models and additive models in Pardoe (2001b), in which the plots were renamed “Bayes
marginal model plots” (BMMPs). The plots provide a way for visualizing model uncertainty in the
“marginal model plots” (MMPs) of Cook and Weisberg (1997).

This article describes the BMMP methodology in the context of a binary logistic regression
analysis. Section 2 highlights the issues involved in assessing the fit of logistic regression models.
It also introduces an example dataset on breast cancer diagnosis that will be used to illustrate the
proposed methodology, outlines the difficulties of using residual plots, and reviews how MMPs
can help with model assessment. However, without guidance on the level of uncertainty in the
model, MMPs can be difficult to interpret. Section 3 provides details on how Bayesian model
checking ideas can be used to address this problem, and illustrates how BMMPs can guide model
improvement for the breast cancer data. We present a second example in Section 4, which follows
an analysis by Bedrick, Christensen, and Johnson (1997) concerned with predicting survival at a
trauma center. Section 5 contains a discussion.

2 BACKGROUND

2.1 Assessing “goodness of fit”

How can we assess the fit of a regression model that is to be used to explain the dependence of a
binary responsg on a vector of predictors, or to predicty from x? Let the unknown conditional
distribution ofy givenx be represented by its cumulative distribution functiBty|x). Suppose

we have a model foF (y|x), denoted by its cumulative distribution functidviy(y|x), where@ is

a vector of unknown parameters. Further, suppose we have completed the exploratory stage of the
analysis, and have a reasonable first model that we would like to assess.

For a frequentist analysis, assume tlatan be consistently estimated undég(y|x) with
6. For a Bayesian analysis, assume that inference will be based on a posterior distribution for
the model denoted byl (y|x, y,), wherey, is then-vector of observed responses. Before us-
ing Mg (y|z) or Mg (y|x,y,) to address a practical issue, we need to be confident that the model
provides asufficiently accurat@pproximation toF(y|x), where the accuracy is gauged relative
to the practical issue. If the model is found to be deficient, the nature of the deficiency may in-
dicate a need for some aspect of the model to be reformulated, or that poorly fitting or influential
observations need to be considered separately.

Identifying the nature of a model deficiency for logistic regression is not an easy task. Pregi-
bon (1981) developed the theory behind extensions of traditional linear regression diagnostics to
logistic regression, and standard text-books, such as Agresti (2002) and Hosmer and Lemeshow
(2000), offer some useful advice on model diagnostics in this context. However, the methodology
on offer can be difficult to use, and the proposed graphical displays often lack clear, unambiguous
meaning. Noting the difficulty of interpreting linear regression diagnostic displays in a logistic
regression setting, Landwehr, Pregibon, and Shoemaker (1984) suggested modifications that led to
pioneering work in this field. Eno and Terrell (1999) also proposed novel graphical techniques for



logistic regression. We present an alternative graphical approach in Section 3.

2.2 Breast cancer data

The “Wisconsin Breast Cancer Data” (Bennett and Mangasarian, 1992) provides an example of a
binary logistic model assessment problem. These data consist of 681 cases of potentially cancer-
ous tumors, 238 of which turned out to be malignant, and 443 of which were benign. Determining
whether a tumor is malignant or benign is traditionally accomplished with an invasive surgical
biopsy procedure. An alternative, less invasive technique, allowing examination of a small amount
of tissue from the tumor, is “Fine Needle Aspiration” (FNA). For the Wisconsin data, FNA pro-
vided nine cell features for each case; a biopsy was used to determine the tumor status as malignant
or benign.

Features of the tissue cells can be used as predictors in a model with tumor status as the re-
sponse. The hope is to use the model to successfully predict tumor status based only on the FNA
predictors. Of critical importance is whether the model can provide an accurate alternative to the
biopsy procedure for future patients.

The dataset consists of the following response and predictor variables:

y =Classl =0 if malignant, 1 if benign x5 = Mitos = mitoses

x1 = Adhes = marginal adhesion 2¢ = NNucl = normal nucleoli
29 = BNucl = bare nuclei x7 = Thick = clump thickness
x3 = Chrom = bland chromatin xg = UShap = cell shape uniformity
x4 = Epith = epithelial cell size xg9 = USize = cell size uniformity
The predictorse = (z1,...,29)7, are all integer values between one and ten (one represents a

“normal” state, ten indicates a “most abnormal” state), and are determined by a doctor assessing
the tissue cells through a microscope. Together, the predictors provide a wealth of information on

tumor status. In fact, it appears that a subset of the predictors can provide nearly all the information
available. Subset selection on the full set of nine predictors, removing the least significant predictor

at each stage, leads to the following model worthy of consideration:

Model 1:
logit(Classl) =11.049-0.436 Adhes-0.470 BNucl-0.623 Chrom-0.378 NNucl—0.818 Thick

Some traditional numerical measures of fit include Waidlues for predictors in the model each

less than 0.0005p-values for adding one more predictor each greater than 0.05, and residual
deviance of 96.5 on 675 degrees of freedom. Based on these numbers, the model appears to fit
well. However, perhaps plots of the data can give us further information on the fit of this model.

2.3 Residual plots

Two-dimensional plots of residuals versus fitted values or predictors are traditionally used to as-
sess lack of fit of a regression model. The general idea is that if the model is correct then the
sample residuals should appear independent of the predictors, with allowance for typically negligi-
ble dependence caused by substituting estimates for parameters. Consequently, observed patterns
that indicate clear dependence also indicate violation of assumptions in the model. This paradigm
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Figure 1: Residual plots for model 1 fit to the breast cancer data.

works best for linear models with additive errors. Complications arise in logistic regression and
other generalized linear models because in such settings population residuals may not be indepen-
dent of the predictors when the model is in fact correct.

Figure 1 shows two plots of deviance residuals with non-parametric smooths superimposed.
These plots, and all subsequent plots, have been constructed using “Trellis Graphics” (Becker and
Cleveland, 1996) ir8-PLUS. For consistency with later plots, horizontal axis labels are shown
in a strip at the top of the plots, and a common vertical axis label is displayed just once for all
related plots. The upper plot is a residual plot with horizontal axis equal to Mitos, a predattor
in the model. If there are any unexpected patterns in this plot, then perhaps Mitos could usefully
be added to the model. One problem with using residual plots in generalized linear models is that
it can be difficult figuring out what kinds of patterns are unexpected and which are entirely to be
expected. In binary logistic regression, the main unexpected pattern to look for is a non-constant
mean function in the plot, as discussed by Cook (1998, sec. 15.1). Because the smooth of the
residuals is flat relative to the variation in the residuals, there is apparently nothing to suggest that
Mitos could usefully be included. However, it is less clear if the obvious pattern in the residuals
contains relevant information or if a comparison of the variation in the smooth relative to variation
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in the residuals is in fact most appropriate.

The lower plot has horizontal axis equal to the linear fit from the model. This looks a little
strange, and can be hard to interpret. In particular, the way the residuals fall on two distinct curves
is anexpectegattern due entirely to the fact that the response values are either zero or one, and the
fitted probabilities are a non-linear but monotone function of the linear fit. But again the smooth
of the residuals is essentially flat.

In both plots of Figure 1, we visually judged variation in the smooths relative to variation in the
data using intuition from residual plots for linear, additive-error regressions. Such intuition may
not be transferable to logistic regression. In addition, it is not always clear how residuals should be
defined, both in a logistic regression context and from a Bayesian perspective (see Chaloner and
Brant, 1988). Interpreting residual plots can be difficult because not all systematic patterns indicate
a model deficiency, for example the two-curve pattern in the lower plot of Figure 1. Even when
a systematic pattern does signal a problem, traditional interpretations can be misleading. Cook
and Weisberg (1999) gave a continuous response regression example in which a fan-shaped plot
of residuals versus fitted values results from an incorrectly specified mean function, not from non-
constant variance as would usually be assumed. Such care with interpretation seems especially
warranted with logistic regression, where there are several additional complications as discussed
previously.

Residual plots are often judged to be useful in model assessment because systematic effects are
removed from the data, apparently allowing any remaining structure to be detected more easily.
However, constructing a residual can actually add structure and noise to the data, making it more
difficult to discern model inadequacy. For example, consider an additive-error regression with true
modely = g(x”8) + ¢ wheree is independent of andg is a nonlinear function. Suppose the
OLS estimates of, andb in the incorrect mode) = b, + =”'b + ¢ converge ta3, and3. Then
the population residuals are= g(x?80) — 3y — '3 + . In general,3 # 6 so the residuals
can depend on two linear combinations of the predictors, whitkepends on only one linear
combination. Detecting the model deficiency using residual plots may then be more difficult than
using the original data because the presengecain be obscured by’ 3. For instance, a plot of
versuse’ @ will have mean functio(x” @) with constant variancé/ar(y|xz”6) = Var(¢). But a
plot of r versuse® @ will have mean functio(z?0) — 3, — E(z? 3|z’ 0) and variance function

Var(r|z’0) = Var(z' 8|=”0) + Var(e) > Var(y|x” )

Residual plots work best whehx 6 so thatVar(z? 8|z”8) = 0 and consequentlyar(r|z’ ) =
Var(y|z” 6). Nevertheless, wheWar(r|z”0) > Var(y|z” ), dependence om”8 will typically
be less clear in a plot of versusz? 8 than in a plot ofy versusz? 6.

The same type of situation occurs in logistic regression, but the effects are more complicated
because of the non-additive nature of the errors. Further discussion of the issues involved with
interpreting residual plots is available in Cook (1994), Cook and Weisberg (1997), and Cook and
Weisberg (1999).

2.4 Marginal model plots

Alternatively, we can visualizgoodnes®f fit in a marginal model plot (MMP) such as that shown
in Figure 2 with horizontal axis = Mitos. Cook and Weisberg (1997) introduced these plots from



Marginal model plot(s): spline smooths
Estimates for data (under F) ——  Estimates for fitted values (under M) ———

h = Mitos (smoothing parameter:4)
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Figure 2: MMP for the mean with = Mitos for model 1 fit to the breast cancer data.

a frequentist perspective, in which the solid line is a smooth of the data and the dashed line is a
smooth of the fitted values from the model. The rationale for the MMP is this statement:

Er(ylz) = Bglylz), VaecX CRF (1)
— En(ylh) = Egylh). Vh=h(z): R R’ 2)

whereEr denotes expectation undgr Ey; denotes expectation undkly, and X’ is the sample
space ofx. Think of x here in the same way that it is thought about in subset selection, i.e.
predictors that are included in the model being considered, as well as potential predictors not in the
current model. This result, which follows from Proposition 4.3 in Cook (1998), requires only that
h be measurable with respect4o Residual plots also rely on (1) and (2) for their interpretation,
excepty is replaced with the residual.

Equality (1) is what we would like to check, but if the dimensionwak greater than two, then
E(y|x) can be difficult to visualize. However, becausis univariate E(y|h) can be visualized in a
2-D scatterplot, and equality (2) can be checked. So, the idea in a MMP is to coRdat®) and
E;(y|h) for varioush to gain information about the relationship betwéar(y|z) andE (y|x).
The mean function based dhcan be thought of amodel-free while that based oi can be
thought of asnodel-based

We can estimate the two mean functions with smooths. Oﬁlﬁdpm) by smoothingy versus
h using a non-parametric smooth such as a cubic smoothing spline. The corresponding model-
based estimate of the mean function uses the relatiodghig|?) = E[Eg(y|z)|h]. So, obtain
Em(yyh) by smoothingEy; (y|x) versush; note thatty (y|x) is the (assumed) mean function from
the fitted model, or—in other words—tliéted valuesrom the model. Superimpodé:(y|h) and
Em(yyh) on a plot ofy versush to obtain a MMP for the mean in the (marginal) directibn
Using the same method and smoothing parameter for the mean function estimatels andaf
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allows their point-wise comparison, since any estimation bias should approximately cancel. Even
though one mean function estimate smooths (binary) data and the other smooths (continuous) fitted
values, each smooth estimates the probability ghatone as a function df, and each smooth has
approximately the same bias. See Bowman and Young (1996) for elaboration of this point.

Ideas for selecting useful functiorsto consider in practice are given in Cook and Weisberg
(1997), and include fitted values, individual predictors in the model, potential predictors not in
the model, linear combinations of the predictors, and random linear projections of the predictors.
Other possibilities include functioniswhere lack of fit is most likely to be observed. Promising
candidates include functions found usisliced inverse regressiofii, 1991), principal Hessian
directions(Li, 1992), andsliced average variance estimati¢@ook and Weisberg, 1991).

Now, if M is an accurate approximation i then for any. the marginal mean function es-
timates should agredsr(y|h) ~ Eg(y|h). Any indication that the estimated marginal mean
functions do not agree for one particularcalls M into question; if they agree for a variety of
plots, there is support fadvl.

So, how should Figure 2 be interpreted? In this plot, the smoothing splines have four effective
degrees of freedom (the smoothing parameter for smoothing splines) and the points have been
jittered to aid visualization of data density. Most of the data is on the left where Mitos is equal to
one or two, and here the smooths match well. But, for Mitos three or higher, the model seems to
predict higher probabilities of a tumor being benign than the data indicate. But, is the gap between
the smooths so large that we should be concerned, or so small that we can just put it down to
random variation?

The same issue of variability arises in residual plots also. For instance, the smooths in Figure 1
are judged against horizontal lines at 0. The deviance, which is essentially a numerical summary
of a residual plot for a logistic regression, provides one way to address this issue. However, if
a model is identified as poorly fitting due to a high deviance in relation to the error degrees of
freedom, there is no guidance available on how to improve the model. It would be helgk# to
the nature of the lack-of-fit in a graphical display, and in this respect the MMP is to be preferred
over the residual plot since it is easier to interpret and therefore potentially more informative.

Even if My (y|x) = F(y|x), the estimated marginal mean function estimates in an MMP would
not match exactly. From a frequentist perspective, the data can be thought of as just one realization
of many possible samples. So, a possible solution to the problem of comparing the estimates is to
calculate a sampling-theory confidence band or perhaps generate replicate data by bootstrapping.
Alternatively, from a Bayesian perspective, the data are fixed, but the variability in the model
estimates is given explicitly by the posterior distribution for the parameters. A possible solution to
the assessment problem displays this variability in the model smooth, allowing the analyst to more
easily judge whether it would be reasonable for the data to be generated by the model in question.

3 BAYES MARGINAL MODEL PLOTS

3.1 Visualizing model uncertainty

To introduce ideas and keep notation concise, consider assessing how well avinedel(y|0)
fits potential datay = (y1, ..., y,)7, wheref is assumed to have a prior probability distribution.
Box (1980) proposed a Bayesian diagnostic for checkinlgased on the marginal, or predictive,



distribution ofy. He suggested assessivigby referring the value of the predictive density for the
observed dataf(y,|M), to the density functiorf (y|M), by calculating a tail area, say. A “small”
tail area indicates thaj, would be unlikely to have been generatedNdy and thus call$\I into
guestion. More generallyl can be assessed by referring the value of the predictive density of
some relevant checking functiony ), aty, to its predictive density, for a variety gf Examples
of usefulg in practice include residuals, order statistics, and moment estimators.

Rubin (1984) proposed an alternative approach that does not require proper priors, as Box’s
approach does, using the posterior predictive density

F(ylye M) = / F(410, M)7(8]y,, M) d

wheref(y|@, M) is the likelihood fory andx(8|y,, M) is the posterior density @&. The posterior
predictive distribution ofy can be thought of as a distribution for potential data that we might
observe, if the model that we think producgg including the particular@ valug was used to
produce a new set of data. Since this partic@laalue is unknown, average over plausible values
using its posterior distribution. Again, diagnostics similar to Box’s tail area and checking functions
g can be constructed. Use of the posterior predictive distribution in a goodness of fit test was first
proposed by Guttman (1967). Rubin’s approach has been extended by Meng (1994) to allow the
checking functiory to depend on nuisance parameters as well ag, @md by Gelman, Meng, and
Stern (1996) to allowy to also depend o8.

Another way to think about Rubin’s approach is in terms of a sampling simulation. Gelman
et al. (1996) provide references to many papers that discuss this interpretation. The idea is to draw
a value off from its posterior distribution, and then generate a samptereflizations from the
modelM indexed by thif). Repeat this process a large numbeof times and then compare the
datay,, to them realizations fronM. Then, intuitively, ify, “looks like” a typical realization from
M, there is no reason to doubt the fitldf. On the other hand, iy, appears to be very “unusual’
with respect to then realizations from\i, thenM is called into question. To do this in practice,
methods for comparing,, to them realizations fromM and measures of “unusualness” need to be
developed. But once done, the methodology can be applied in any situation where samples can be
generated from the posterior distribution thr

A graphical way to do this is based on the MMPs introduced earlier. In regregspyoyides
“fitted values”. So, instead of sampling compare model-free predicted values with expected
y-values based on samplédvalues. A Bayes marginal model plot (BMMP) is a scatterploy of
versugh with a mean function estimate undésuperimposed. Then, instead of also superimposing
the mean function estimate unddron this plot, superimpose a mean function estimate for each
model sampléy,, t =1,...,m.

Recall that the smoothing parameters for the smooths in a particular MMP need to be equal to
allow their point-wise comparison. Similarly, the smooths in a BMMP should all have the same
smoothing parametey, Therefore it is desirable to selecto that the smooths are flexible enough
to capture clear systematic trends in all the corresponding scatterplots, while not over-fitting too
much in any one scatterplot, over-reacting to individual points, and tracking spurious patterns. This
is clearly impractical, but a viable alternative is to graphically selett capture the systematic
trends in both a scatterplot of the daig yersush and a scatterplot of the fitted values from the
model versug. Further discussion of this issue is given in Section 5.



If enough samples are taken, say= 100, the Bayes mean function estima@%t(mh), t=
1,...,m, will form a mean functiorbandunderM. The plot then provides a visual way of de-
termining whether there is any evidence to contradict the possibilitylthgte) = M(y|x). If,
for a particularh, the mean function estimate undefies substantially outsidéhe mean function
band undetM or it does not follow the general pattern shown by the model smooths,\Nthen
called into question. If, no matter what the functibms, the mean function estimate undéfies
broadly insidethe mean function band und&f and it follows the general pattern shown by the
model smooths, then perhalpkprovides an accurate description of the conditional distribution of
y|x and is a useful model.

The binary logistic regression model can be written

Yil (x4, pi) ~ Bernoulli(p;)
pi = Pr(y = 1|z;) = E(y|z:)
logit(p;) = log (1 bi ) = 0"x;

7

One possible prior for this regression is
6 ~ N(0,,kI,) 3)

wherek can be set to reflect the degree of prior uncertainty for any particular dataset. It is not
possible to sample directly from the posterior, so instead Markov chain simulation can be used
to obtain the samples. In particular, posterior samples can be obtained by Gibbs sampling using
WiInBUGS software (Spiegelhalter, Thomas, and Best, 1999). Checking convergence in Markov
chain sampling is very important, and software is available from various sources to assist in this
task. Some software that works well wiinBUGS output isSBOA (Smith, 2001).

Constructing a BMMP for the mean in directiégrrequires model-free and model-based esti-
mates of the mean function with respectitoTo obtain the model-free estimalik (y|%), smooth
the data{y;} on {h;}. To obtain the model-based estimafaﬁet(ym), smooth the fitted-values
based on the posterior samplgsy, (y|x:)} on{h;}. The fitted values corresponding to posterior
sampled, are

1

E T;) =pit = , t=1,....n;t=1,...,m
Mgt(y| ) Dit 1 + exp(—OZwZ)

3.2 Breast cancer data revisited

The BMMP equivalent to Figure 2 is shown in Figure 3. In this plot, the prior uncertainty param-
eter,k, in (3) was set to b&0°, the smoothing splines have four effective degrees of freedom, and
m = 100. Here, the black smooth of the data lies below the gray band of the fitted probability
smooths for values of Mitos three or higher. Mitos clearly adds information on the probability of
being benign not provided by the five predictors in the model. This plot, in contrast to a residual
plot, can be interpreted straightforwardly, incorporates model uncertainty, and provides guidance
on model improvement. Recall that the Waldalues for adding one more predictor to the model
were each greater than 0.05; the BMMP tells us that we should not be so hasty in neglecting Mitos
because of this. So, let’'s add Mitos to the model to see what happens.
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Bayes marginal model plot(s) for mean: spline smooths
Estimates for data (under F) ——  Estimates for fitted values (under M)

h = Mitos (smoothing parameter:4)
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Figure 3: BMMP for the mean with = Mitos for model 1 fit to the breast cancer data.

Model 2:
logit(Class1) = 11.473-0.445 Adhes-0.474 BNucl—0.633 Chrom-0.362 NNucl—0.722 Thick
—0.682 Mitos

For this model, the BMMP for the mean with = Mitos is the upper plot of Figure 4. In this

plot, the smoothing splines again have four effective degrees of freedom. This plot shows a big
improvement over Figure 3, so it appears that adding Mitos to the model is useful. However,
recall that aseriesof BMMPs needs to be considered in order to be confident in the model. So,
how about the BMMP for the mean with set equal to the linear fit from the model? This is

the lower plot of Figure 4. In this plot, the smoothing splines have twelve effective degrees of
freedom—increased flexibility in the smooths is needed to fit the “logistic curve” shapes of the
data and the fitted probabilities. The black smooth of the data lies mostly inside the gray band
of the fitted probability smooths, but it gets very close to the edge of the band at one point. The
model appears to fit most of the data very well, but has trouble with cases “in the middle” when
the linear fit is close to zero. Reactions to this behavior in the middle are context dependent, and
Section 5 contains some discussion of a numerical summary measure for the plot that could assist
in cases such as this. Nonetheless, BMMPs have taken us much further in model assessment and
understanding for this dataset than either residual plots or MMPs.

4 TRAUMA DATA

Bedrick et al. (1997) gave a detailed Bayesian analysis of a model for predicting survival at a
trauma center. They analyzed data on 278 survivors (LB and 22 fatalities (LIVE= 0) with
the following predictor variables:



Bayes marginal model plot(s) for mean: spline smooths
Estimates for data (under F) Estimates for fitted values (under M)
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Bayes marginal model plot(s) for mean: spline smooths
Estimates for data (under F) ——  Estimates for fitted values (under M)

h = linear fit (smoothing parameter:12)
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Figure 4: BMMP for the mean for model 2 fit to the breast cancer data: Mitos (upper) and
h = the linear fit (lower).

ISS = injury severity score =0 if no injuries, up to 75 if severely injured

RTS  =revised trauma score =0 if no vital signs, up to 7.84 if normal vital signs
AGE =ageinyears =from 1to 94

TI = type of injury = 0if blunt, 1 if penetrating

AGE.TI = AGE x Tl interaction = from 0 to 94

Bedrick et al. provide a very nice discussion of modeling these data, including elicitation
of expert prior opinion, inference for survival probability, and some model-checking diagnostics.
The discussion related to this latter point is restricted to case deletion diagnostics however, and
the reader is perhaps left with a vague uneasiness about whether this inventive model does indeed
provide a sufficiently accurate approximation to the conditional distribution of LIVE given the
available predictors.

We fitted a logistic model essentially identical to that of Bedrick et al. ugigBUGS soft-
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Bayes marginal model plot(s) for mean: spline smooths
Estimates for data (under F) ——  Estimates for fitted values (under M)

h = linear fit (smoothing parameter:6) h = ISS (smoothing parameter:3)
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Figure 5: BMMPs for the mean for the trauma data.

ware. Our priors were restricted to integer-parameter beta distributions, whereas the original anal-
ysis utilized non-integer values for the prior beta distributions. Nevertheless, posterior distribution
summaries were in close agreement. The model gives BMMPs for the mean w&hto four
different functions as shown in Figure 5. In these plots, the smoothing splines have six, three, four,
and three effective degrees of freedom for the linear fit, ISS, RTS, and AGE. The black model-
free smooths go mostly through the middle of the gray model-based smooths for each of these
h-functions. Otherh-functions (not shown) also display this feature. This model does indeed
appear to fit very well.

The BMMP for the linear fit indicates some lack of fit on the far right of the plot. This lack
of fit is being driven by the case in the top right corner. This is case 232 who survived despite all
indications to the contrary. Bedrick et al. identified this case through case deletion diagnostics.
Figure 5 enables an interpretation of this case’s influence on the model in relation to predicted
probability of survival.
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5 DISCUSSION

BMMPs offer a quick and easy way to check models graphically. The sampling needs to be done
only once for each model and cycling through BMMPs in a variety of directiopsovides guid-

ance on the fit of the model. In an area where we are unaware of any other competing graphical
methods, we propose this methodology as a viable alternative to the residual plot that avoids many
of the latter’'s drawbacks in relation to definition and interpretation. In particular, BMMPs can be
used to aid model assessment (as opposed to model selection—BMMPs are not designed for subset
selection, for example).

5.1 Bayes discrepancy measure

A discrepancy measure could perhaps provide a useful numerical complement to a BMMP to aid
its interpretation. Consider a discrepancy measure for a BMMP for the mean in dirkdiased
on the average squared distance between the model smooths and the data smooth

Du(h) = Eg[En{(Er(y|h) — Eny(y|h))*}]

whereEy represents expectation with respect to the posterior distributigh dby,(h) can be
estimated using the posteri@isamples and the smooths (y|h) andEw, (y|h), t = 1,...,m, by

1) = = 33 (Eellt) — By 0l

i=1 t=1

The “null” distribution of this discrepancy measure can be estimated empirically using just the
model smooths

Dﬁj(h — 1 Z Z <EM9 (ylhs) El\lgt(y|hi)>2 J=1....m

i=1 t=1

One of the denominators hereris— 1 rather thanmn since the distance between a model smooth
and itself is identically zero. Then, tiBayes discrepancy measuse

BDM (h :%zm: I(Dg;, (1) > Dy, (1)

This measure calculates the proportiomoimodel smooth discrepancieléﬂj(h), that are larger

than the data smooth discrepan%d(h). Intuitively, it essentially counts the number of model
smooths that are farther away (on average) from their companions than the data smooth is from
them. The larger this measure, the more there is support for the model (in dirkitgince the

data smooth does not appear to be very “unusual” with respect to the model smooths. As this
measure becomes smaller, there is less support for the model, since now the data smooth appears
more unusual. Our experience using this methodology suggests that a BDM value less than 0.05
for any h strongly indicates lack of fit, while a BDM value between 0.05 and 0.10 indicates that
improvement in the model may be possible.
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For BMMPs to be useful graphical model assessment methodology, they should show no lack
of fit for all » when the model is correct, but show clear lack of fit for at least /oméhen the
model is incorrect. For BDMs to be a useful numerical complement to BMMPs, they should be
far from zero for allh when the model is correct, but be close to zero for at least:omben the
model is incorrect. In addition, choice of smoother type, smoothing parameter, number of samples,
and plotting directiork, could each have an effect on the conclusions of the procedure. Details of
simulations designed to consider these issues in a variety of regression situations were given by
Pardoe (2001a). Some broad conclusions follow.

5.2 Smoothing issues

BMMPs utilize nonparametric scatterplot smoothers, and both cubic smoothing splines and loess
smoothers performed well. Other smoother methods, including kernel smooths and Friedman’s
“super smoother,” performed less well. All the preceding techniques make use of standard non-
parametric methods for continuous data. These ignore the binary nature of the response variable
in the current application. There are specialized smoothers for binary data, for example the local
likelihood smoother in Bowman and Azzalini (1997, page 53), that could be used as an alternative.
However, such smoothers are much more computer-intensive and at the present time impractical
for use in BMMPs. Also, it is our experience that use of more sophisticated smoothers usually
changes the visual impression of a BMMP very little, and so use of standard continuous data
smoothers does not seem unreasonable.

Whichever smoothing method is used, some care must be exercised in the selection of the
smoothing parameter. Over-smoothing can result in smooths that miss clear patterns, while under-
smoothing can produce highly variable smooths that track spurious patterns. Broadly speaking,
when the smoothing parameter was appropriately chosen as a reasonable compromise between
over- and under-smoothing, the simulations correctly diagnosed poorly-fitting models and well-
fitting models most of the time. However, it was sometimes possible to over-smooth an incorrect
model and miss evidence of lack of fit, and to under-smooth a correct model and falsely conclude
model inadequacy.

There appear to be no reliable short-cut methods for pre-selecting the smoothing parameter
ahead of time, or recommended values that will work in most situations. The analyst needs to look
at the scatterplots of the datg) (versush and of the fitted values from the model versuand
choose a smoothing parameter that produces reasonable smooths in both plots simultaneously. If
in doubt, err on the side of over-smoothing rather than under-smoothing, since under-smoothing
sometimes produced low BDM values in cases when the model was good, but over-smoothing
rarely lead to high BDM values in cases where the model was bad.

The amount of over- or under-smoothing has to be quite extreme to produce poor results how-
ever. For example, the effect of decreasing or increasing the effective degrees of freedom by one
for the smoothing splines in Figure 3 and the lower left plot of Figure 5 can be seen in Figures 6
and 7. The qualitative nature of the plots is very similar to that of the earlier plots. The over-
smoothed upper plot of Figure 6 continues to indicate lack of fit for values of Mitos equal to three,
four or five; interpretation is more difficult for larger values of Mitos since the data smooth is ef-
fectively truncated at zero. The under-smoothed lower plot of Figure 6 conveys an identical visual
impression to that of Figure 3 even though the smooths are more wiggly. The over-smoothed upper
plot of Figure 7 continues to indicate good fit for= RTS, as does the under-smoothed lower-plot,
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Estimates for data (under F)

Bayes marginal model plot(s) for mean: spline smooths
Estimates for fitted values (under M)

12 h = Mitos (smoothing parameter:3)
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Bayes marginal model plot(s) for mean: spline smooths
Estimates for data (under F) ——  Estimates for fitted values (under M)

12 h = Mitos (smoothing parameter:5)

w4l &8 s o ° =

Classl

02 T T T T T

Figure 6: BMMPs for the mean with = Mitos for model 1 fit to the breast cancer data: smoothing
parameter = 3 (upper) and smoothing parameter = 5 (lower).

although again the smooths are more wiggly.

The suggested method for choosing the smoothing parameter relies on human perception of
the patterns in the plots of the datg {ersush and of the fitted values from the model versus
Our experience with the methodology indicates that, in the case of smoothing splines, variation of
two or three effective degrees of freedom between different analysts is not unreasonable, but, as
illustrated above, makes little (qualitative) difference to the plots. Varying the smoothing parameter
any more than this can have adverse effects, but is unlikely to be a problem in practice since it
would likely correspond to a poor representation of the patterns in the data and the fitted values.
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Estimates for data (under F) —— _ Estimates for fitted values (under M)
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Figure 7: BMMPs for the mean with = RTS for model fit to the trauma data: smoothing param-
eter = 3 (upper) and smoothing parameter =5 (lower).

5.3 Number of posterior samples

The actual number of samples used to create the BMMP does not appear to have a large impact on
this methodology, so there would appear to be no need to use any more than 100 samples for each
plot. Using substantially less than 100 samples would likely lead to poor resolution in the plots
and make interpretation difficult.

5.4 Extensions

The examples considered here adopted Rubin’s approach using posterior sampling. BMMPs based
on Box’s approach using prior sampling could be constructed similarly, although their interpreta-
tion would be a little different. An intermediate approach using cross-validation/jack-knifing ideas
might also be useful, although implementation becomes much trickier computationally. One possi-
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ble implementation is via re-weighting of a regular posterior sample (see Chib and Geweke, 2001,
for example).

Details for other types of regression models, such as linear and additive models, follow from
the discussion for the binary logistic model. Other models—for example survival models, time
series models, and random effects models—could no doubt benefit from the application of the
ideas in this paper. One strength of the BMMP methodology is that it is broadly applicadoig to
regression situation, with just the details of obtaining samples and constructing the actual plots to
worry about.

In addition, there are other plots used in the area of regression diagnostics that can be difficult
to assess relative to the variation in the data. Examples include residual plots; CERES plots, which
are a generalization of partial residual plots and were introduced by Cook (1993); and net-effect
plots, which aid in assessing the contribution of a selected predictor to a regression and were
introduced by Cook (1995). The ideas discussed above would appear to ltdedaplay in the
analysis of such plots. For example, as suggested by a referee, and also proposed in Pardoe (2001a,
sec. 8.3), a “Bayesian residual plot” could consist of smooths of many simulated models’ residuals
using a sample from the posterior distribution of model parameters. The sample of smooths either
would or would not cover the constant functigiiresidualh) = 0. However, in interpreting such
a plot, careful consideration of the issues raised in Section 2.3 would have to be given. Also,
adding posterior-based smooths to the upper plot of Figure 1 seems unlikely to indicate the model
deficiency that is apparent from the BMMP in Figure 3.

5.5 Software

S-PLUS andR functions have been developed that can be used in conjunctionVtBUGS
andBOA to construct BMMPs for the mean in any user specified directiorhe software is avail-
able athttp://Icb1l.uoregon.edu/ipardoe/research/bmmpsoft.htm and further
details are provided in Pardoe (2001c).
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