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Abstract

A necessary step in any regression analysis is checking the fit of the model to the data. Graphical methods are
often employed to allow visualization of features that the data should exhibit if the model was to hold. Judging
whether such features are present or absent in any particular diagnostic plot can be problematic. In this article I take a
Bayesian approach to aid in this task. The “unusualness” of some data with respect to a model can be assessed using
the predictive distribution of the data under the model; an alternative is to use the posterior predictive distribution.
Both approaches can be given a sampling interpretation that can then be utilized to enhance regression diagnostic
plots such as marginal model plots.
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1 Introduction

Consider a regression problem withn observations of a univariate responsey andp predictors,x = (x1, . . . , xp)T .
Suppose a model has been derived for the conditional distribution ofy givenx, F(y|x), either from theoretical con-
siderations or data analysis; denote this byM(y|x, θ), whereθ is a vector of unknown parameters. Assumeθ can be
consistently estimated witĥθ. Before usingM̂(y|x) = M(y|x, θ̂) to address a practical issue, I need to be confident
thatM(y|x, θ) provides asufficiently accurateapproximation toF(y|x), where the accuracy is gauged relative to the
practical issue. In other words, acknowledging the insight of Box (1979) that “all models are wrong, but some are
useful”, how can I assess ifM(y|x, θ) is useful? I propose a new application of theBayesian sampling approachto
that question in this article. I give a rationale for the methodology in Section 2 and describe my graphical application
of it in Section 3. I provide details for normal linear models in Section 4 and additive models in Section 5. Section 6
contains a discussion.

2 Rationale

2.1 Bayesian model checking diagnostics

To introduce ideas and keep notation concise, consider assessing how well a modelM = M(y|θ) fits some potential
datay = (y1, . . . , yn)T , whereθ is assumed to have a prior probability distribution. Box (1980) proposed a Bayesian
diagnostic for checkingM based on the following. Conditional onM, the marginal, or predictive, distribution ofy can
be described by its density

f(y|M) =
∫

f(y|θ, M)f(θ|M)dθ (1)

wheref(y|θ, M) is the likelihood fory andf(θ|M) is the prior density ofθ. Once actual datayd are available,M
can be assessed by referring the value of the predictive density atyd, f(yd|M), to the density functionf(y|M). One
way to do this is to calculate

α = Pr(f(y|M) < f(yd|M)) (2)

where the probability is calculated underM. A “small” value ofα indicates thatyd would be unlikely to be generated
by M, and thus callsM into question. More generally,M can be assessed by referring the value of the predictive
density of some relevant checking function,gi(y), at yd to its predictive density, for a variety ofgi. Examples of
usefulgi in practice include residuals, order statistics, and moment estimators.

Box’s approach can only be used with proper priors, since otherwise (1) does not exist. Rubin (1984) proposed an
alternative approach that does not require proper priors, using the posterior predictive density

f(y|yd, M) =
∫

f(y|θ, M)f(θ|yd, M)dθ

wheref(θ|yd, M) is the posterior density ofθ. Again, diagnostics similar to (2) and checking functionsgi can be
constructed. Rubin’s approach has been extended by Gelman, Meng, and Stern (1996).

2.2 A sampling interpretation

Another way to think about Box’s approach is in terms of a sampling simulation. Gelman, Meng, and Stern (1996)
provide references to many papers that discuss this interpretation. The idea is to draw a value ofθ from its prior
distribution, and then generate a sample ofn realizations from the modelM indexed by thisθ. Repeat this process a
large numberm of times and then compare the datayd to them realizations fromM. Then, intuitively, ifyd “looks
like” a typical realization fromM, there is no reason to doubt the fit ofM. On the other hand, ifyd appears to be very
“unusual” with respect to them realizations fromM, thenM is called into question. To do this in practice, methods
for comparingyd to them realizations fromM and measures of “unusualness” need to be developed. But once done,
the methodology can be applied in any situation where samples can be generated from the prior distribution forθ. In
particular, the methodology can be applied in situations where quantities such as (2) cannot be derived analytically.

Rubin’s approach can also be cast in sampling terms, with each value ofθ drawn from its posterior rather than
prior distribution. The crucial difference between the two approaches can therefore be considered in terms of the
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choice of “sampling distribution” forθ used to generate realizations fromM. This indicates that the two approaches
are attempting to address slightly different questions:

• Box considers if the data are consistent with a family of models indexed by parameters whose variability is
modeled only by prior beliefs. For example, (2) contrasts information from theprior and data, and checks their
compatibility.

• Rubin considers if the data are consistent with a particular modelthat has been fit to the dataand which is
indexed by parameters whose variability depends on both data and prior beliefs. Diagnostics similar to (2)
contrast information from theposteriorand data, and check their compatibility.

Thus, the two approaches differ on howθ and the data are being viewed. If, whenM holds for the data, the
information in the data is to be used to update belief aboutθ (ie, to obtain its posterior distribution), Rubin’s approach
is more appropriate. If not, and belief aboutθ is to remain the same regardless of the information in the data, Box’s
approach ought to be used. Box’s approach would therefore be used in a situation where prior knowledge iswell-
established. This does not necessarily correspond to a prior distribution with small variance. Box (1980) described
the problem of assessing a normal model for estimating the meanµ for a single batch of manufactured items, where
µ is assumed to arise from a normally distributed industrial process with meanµ0 and varianceσ2

0 . Knowledge about
the industrial process could be well-established but the prior distribution forµ might have large variance (ie large
batch-to-batch variation).

Nevertheless, as prior information becomes more vague, it seems unlikely that information from the data would
not be used to update belief aboutθ (that is, whenM holds and the data haverelevantinformation aboutθ). With
Box’s approach, any particularyd will become less likely to callM into question, as prior information, and hence the
predictive distribution ofy, becomes more vague. As mentioned earlier, in the limit with an improper prior, Box’s
approach cannot even be used.

Some aspects of the model being checked may depend only onθ itself, rather than on a sample ofn realizations
from the modelM(θ). For example,θ might represent predicted values fory underM. If model-freepredicted values
were available, these could be compared directly with theθ samples to assess the fit of the model.

3 A graphical application

3.1 Marginal model plots

I now return to the regression setting of Section 1 to apply the ideas in Section 2 to a particular graphical method for
comparingF(y|x) to M̂(y|x). Following on from Cook and Weisberg (1997),F(y|x) = M(y|x) for all values ofx
in its sample space if and only ifF(y|h) = M(y|h) for all functionsh = h(x). So, a comparison betweenF(y|x) and
M̂(y|x) can be made by comparing characteristics ofF(y|h) andM̂(y|h) for varioush. Particular characteristics that
can be useful to compare include mean and variance functions.

To compare mean functions for example, ploty versush for a particularh. Add a non-parametric mean estimate,
say a cubic smoothing spline with fixed smoothing parameter, to the plot; denote this byÊF(y|h), whereEF denotes
expectation underF. The corresponding mean estimate underM̂ is ÊbM(y|h), whereEbM denotes expectation underM̂.

SinceEbM(y|h) = E[EbM(y|x)|h], ÊbM(y|h) can be obtained from a non-parametric mean estimate for the regression

of the fitted values under̂M, EbM(y|x), onh. Add ÊbM(y|h) to the plot withÊF(y|h) to obtain amarginal model plot
(MMP) for the mean in the (marginal) directionh. Using the same method and smoothing parameter for the mean
estimates under̂M andF allows point-wise comparison of the two estimates, since any estimation bias should cancel
(Bowman and Young 1996).

Ideas for selecting useful functionsh to consider in practice are given in Cook and Weisberg (1997), and include
fitted values, individual predictors, and linear combinations of the predictors. Further discussion of this issue is
prominent in thedimension-reductionliterature, and work is in progress to develop complementary techniques in
this context. Some examples includeprincipal Hessian directions, due to Li (1992), andsliced average variance
estimation, due to Cook and Weisberg (1991), which can often find functionsh where lack of fit is most likely to be
observed. IfM is an accurate approximation toF, then for any quantityh the marginal mean estimates should agree,
ÊF(y|h) ≈ ÊbM(y|h). Any indication that the estimated marginal means do not agree for one particularh callsM into
question; if they agree for a variety of plots, there is support forM.
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3.2 Bayes marginal model plots

A problem that arises with using MMP’s in practice is deciding, relative to the variation in the data, when the estimated
marginal means agree and when they do not agree. How large do discrepancies between the estimated marginal means
have to be to callM into question? Porzio and Weisberg (1999) provide frequentist methodology to address this issue:
point-wise reference bands to aid visualization and statistics to calibrate discrepancies. An alternative approach is to
apply the ideas discussed in Section 2.

Even if M(y|x, θ) = F(y|x), the estimated marginal means in a MMP would not match exactly. So, a technique
is needed to visualize the variability inM to assess whether it would be reasonable for the data to be generated by such
anM. The sampling interpretation for the Bayesian model checking diagnostics of Box and Rubin provides such a
technique: for any particular MMP, just calculate mean estimates for fitted values corresponding to individual samples
from either the prior distribution (under Box’s approach) or posterior distribution (under Rubin’s approach) ofθ. Then,
instead of adding the mean estimate underM̂ to the plot of the mean estimate underF, add a mean estimate for each
sample fromM̂, and obtain what I call aBayes marginal model plot(BMMP) for the mean. These plots were called
Gibbsmarginal model plots in Cook and Pardoe (2000). Theθ samples are being used directly here, as suggested in
the final paragraph of Section 2.2.

If enough samples are taken, saym = 100, the Bayes mean estimates will form a mean estimateband under
M̂. The plot then provides a visual way of determining whether there is any evidence to contradict the possibility
thatF(y|h) = M(y|h). If, for a particularh, the mean estimate underF lies substantially outside the mean estimate
band under̂M, thenM is called into question. If, no matter what the functionh is, the mean estimate underF lies
broadly inside the mean estimate band underM̂, then perhapsM provides an accurate description of the conditional
distribution ofy|x.

4 Normal Linear Models

The normal linear regression model can be written

yi|xi = E(y|xi) + ei/
√

wi, i = 1, . . . , n

whereE(y|xi) = βT xi, β is ap × 1 vector of unknown parameters,xi is thep × 1 vector of predictor values for
the i-th observation, the errorsei are normally distributed with mean 0 and varianceσ2, and the weightswi > 0 are
known, positive numbers. An intercept term can be included within this framework by setting one of the predictors
equal to a constant. DefiningX = (x1, . . . , xn)T , θ = (βT , σ2)T , andW = diag(wi), then (suppressing the
notation for conditioning onM for clarity)

y|(X, θ) ∼ N
(
Xβ, σ2W−1

)

The usual non-informative prior for the normal linear regression model isf(θ) ∝ σ−2. Consider constructing
BMMP’s in this situation. Since the prior is improper, only Rubin’s approach is appropriate. Sampling from the
posterior is straightforward sincef(β, σ2|(X,yd)) = f(β|(X, yd, σ

2) f(σ2|(X, yd)). In particular, draw a value of
σ2 from

σ2|(X, yd) ∼ RSSχ−2
n−p

where RSSχ−2
n−p is the usual weighted residual sum of squares divided by aχ2 random variable withn− p degrees of

freedom. Then, holdingσ2 fixed, draw a value ofβ from

β|(X, yd, σ
2) ∼ N

(
β̂, σ2(XT WX)−1

)

whereβ̂ = (XT WX)−1XT Wy is the usual weighted least squares estimate forβ. The fitted values corresponding
to the posterior samplesβt areXβt, t = 1, . . . , m.

This procedure is straightforward to program. I developed S-PLUS functions to generate the appropriate posterior
samples from a linear model object, and to construct corresponding BMMP’s for the mean in any user-specified
directionh. I use thesmooth.spline function (Hastie and Tibshirani 1990) to obtain the non-parametric mean
estimates with user-specified smoothing parameter,γ. Recall that the smoothing parameters for all smooths in a
particular BMMP need to be equal to allow their point-wise comparison. Therefore it is desirable to selectγ so
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that the smooths are flexible enough to capture the systematic trends in all the corresponding scatterplots, while not
over-fitting too much in any one scatterplot. This is clearly impractical, so a prudent compromise is to graphically
selectγ to capture the systematic trends only in the scatterplots for the data and forXβ̂. An alternative is to select
γ automatically, for example by using the most flexible of the smoothing parameters chosen by cross-validation for
a subset of the corresponding scatterplots. Given the sometimes erratic behavior of automatic smoothing parameter
selection methods, I prefer to use the graphical approach using the plots of the data andXβ̂ in practice.

Consider an example on the effects of three variables,AN = log10(air to naphthalene ratio), Ctime =
log10(contact time), andBtemp = 0.01(bed temperature− 330), on Y = percentage mole conversion of naph-
thalene to naphthoquinone. The data arose from a chemical experiment in the 1950’s to develop a catalyst in the vapor
phase oxidation of naphthalene. The variable transformations used result in approximate trivariate normality and ap-
pear to stabilize the yield surface. Box and Draper (1987) based an analysis of the data on a full second-order response
surface model. BMMP’s for the mean in the direction of the fitted values for both a first-order linear model and the full
second-order linear model are shown in Figure 1. I selectedγ so that the smoothing splines had foureffective degrees
of freedom(Hastie and Tibshirani 1990) in both plots.
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Figure 1: BMMP’s for the mean in the direction of the fitted values for the naphthalene data.

The BMMP for the first-order model shows the mean estimate underF lying mostly outside the mean estimate
band under̂M. This provides clear evidence to call this model into question. The BMMP for the second-order model
shows the mean estimate underF lying inside the mean estimate band underM̂. There is little evidence inthis plot
to call this model into question. In fact, BMMP’s for the second-order model in a variety of directionsh all appear to
have this characteristic. So, using this graphical diagnostic technique, there appears to be no compelling evidence to
question the second-order model. I will return to this example after discussing a method for constructing BMMP’s for
additive models.

5 Additive Models

The additive regression model can be written

yi|xi = α +
p∑

j=1

fj(xij) + ei, i = 1, . . . , n

wherefj is a “smooth” function for thej-th predictor,xij is thei-th observation of thej-th predictor, and the errors
ei are normally distributed with mean 0 and varianceσ2. Definingθ = (α, f1, . . . , fp, σ

2)T , then

y|(X,θ) = αJn +
p∑

j=1

f j + e (3)
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whereJn is an n× 1 vector of ones,f j = (fj(x1j), . . . , fj(xnj))T , ande is ann× 1 vector of errors.
Hastie and Tibshirani (1990) describe a Bayesian characterization of (3) based on partially improper normal pro-

cess priors for eachf j

f j ∼ N(0n, τ2
j K−

j )

where0n is an n× 1 vector of zeros, andK−
j is a generalized inverse of a matrixKj which is related to the

construction of the estimate off j . For example, whenf j is estimated using a symmetric smoother matrixSj with
smoothing parameterλj , thenτ2

j = σ2/λj , andK−
j = λj(S−j − In)−, whereIn is then× n identity matrix.

Consider constructing BMMP’s in this situation. Rubin’s approach is appropriate here if most of the information
aboutθ is going to come from the data rather than the prior. Also, the prior forθ can be improper if any of thef j

correspond to fixed linear effects, thus necessitating Rubin’s approach. Hastie and Tibshirani (2000) derive a way to
sample from the posterior ofθ using a stochastic generalization of the backfitting algorithm based on Gibbs sampling.
In particular,f j has posterior

f j |(X, yd) ∼ N(Sjyd, σ
2Sj)

Then, withσ2 and eachτ2
j held fixed, posterior samples are generated by adding noiseσS

1/2
j z, wherez is ann × 1

vector of standard normal random variables, to the partial residual smooths in the backfitting algorithm. Ifσ2 and each
τ2
j are not held fixed, conjugate inverse gamma priors lead to inverse gamma conditional sampling steps forσ2 and

eachτ2
j in the algorithm. The fitted values corresponding to the posterior samples(α, f1, . . . , fp)t areαtJn + f1t +

· · ·+fpt, t = 1, . . . ,m. Hastie and Tibshirani developed S-PLUS functions to carry out their sampling procedure. The
code discussed in Section 4 can then be used to construct corresponding BMMP’s for the mean in any user specified
directionh.

Consider the naphthalene data again. The full second-order linear model appears to provide a good fit to the data,
but other regression diagnostics suggest some deficiencies. In particular, although all the coefficient estimates are
highly significant, three observations with large Cook’s distances have a relatively strong influence on some of these
estimates. Also, there are hints of dependence in some residual plots. Cook (1998) suggests that the dependence ofY
on the predictors is through the single linear combinationx = 0.397AN + 0.445Ctime + 0.802Btemp. Applying
Box-Cox response transformation methodology, a linear model with transformed responselog(Y ) and single predictor
x may provide an improvement on the second-order model. Alternatively, an additive model with responseY and
predictorx may prove more accurate. BMMP’s for the mean in the direction ofx for both the linear and additive
models are shown in Figure 2. I selectedγ so that the smoothing splines had four effective degrees of freedom in both
plots. The posterior sampling for the additive model was carried out withσ2 fixed at the unbiased estimate from the
additive model fit and the effective degrees of freedom for the smooth forf fixed at four.
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Figure 2: BMMP’s for the mean in the direction ofx for the naphthalene data.

The BMMP for the linear model with transformed response and predictorx has a similar flavor to the BMMP for
the second-order model in Figure 1, although the mean estimate underF lies a little closer to the edges of the mean
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estimate band under̂M. This feature was similar for other directionsh also. This indicates that the linear model with
transformed response provides a fit that appears to be almost as good as the fit provided by the second-order model,
and, since it is a much simpler model, it might be preferred on parsimonious grounds. As with the second-order model
however, further regression diagnostics indicate that this model too has hints of dependency in some residual plots.
The BMMP for the additive model shows the mean estimate underF lying well inside the mean estimate band under
M̂. There is little evidence inthisplot, or indeed in other BMMP’s for the mean in alternative directionsh, to call this
model into question. Further regression diagnostics indicate that this model provides a good fit to the data with no
clear deficiencies.

6 Discussion

BMMP’s for the mean offer a quick and easy way to check models graphically. The sampling needs to be done
only once for each model and cycling through BMMP’s in a variety of directionsh provides guidance on the fit of
the model. The methodology can be extended to variance function estimates to provide further ways for checking
models. MMP’s can easily be constructed for other types of regression model such as generalized linear models; using
techniques such asMarkov chain Monte Carloto sample from the posteriors of the model parameters allows BMMP’s
to also be constructed for such models.

The examples I considered for normal linear models and additive models adopted Rubin’s approach using posterior
sampling. An example where Box’s approach using prior sampling might be more appropriate is in a situation where
follow-up data were being analyzed for a model that has been fit to previous data.

There are other plots used in the area of regression diagnostics that can be difficult to assess relative to the variation
in the data. Examples include: residual plots; CERES plots, which are a generalization of partial residual plots and
were introduced by Cook (1993); net-effect plots, which aid in assessing the contribution of a selected predictor to a
regression and were introduced by Cook (1995). The ideas discussed above would appear to have a rôle to play in the
analysis of such plots. Work is in progress on these issues, as well as on developing supplementary Bayesian inference
methodology.

Further work is also in progress on making the graphical technique described in this article more precise. In
particular, deciding whether the mean estimate underF lies substantially outside or broadly inside the mean estimate
band under̂M can be a highly subjective process. If it is decided that theF estimate is outside thêM estimate band, the
nature of the discrepancy may also provide some guidance on how a better model might be developed. For example, a
BMMP may exhibit clear discrepancy as a result of just a few observations in the data—these observations may need
to be treated differently to the remainder of the data in drawing overall conclusions.
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