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Abstract

A necessary step in any regression analysis is checking the fit of the model to the data. Graphical methods are
often employed to allow visualization of features that the data should exhibit if the model was to hold. Judging
whether such features are present or absent in any particular diagnostic plot can be problematic. In this article | take a
Bayesian approach to aid in this task. The “unusualness” of some data with respect to a model can be assessed using
the predictive distribution of the data under the model; an alternative is to use the posterior predictive distribution.
Both approaches can be given a sampling interpretation that can then be utilized to enhance regression diagnostic
plots such as marginal model plots.
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1 Introduction

Consider a regression problem withobservations of a univariate responsandp predictorse = (z1,...,2,)7.
Suppose a model has been derived for the conditional distributigrgsfen x, F(y|x), either from theoretical con-
siderations or data analysis; denote th|sM)§/y|a: 0), wheref is a vector of unknown parameters. Assuéhean be
consistently estimated with. Before usingM (y|x) = M(y|z, 0) to address a practical issue, | need to be confident
thatM(y|x, 8) provides asufficiently accurat@pproximation td (y|x), where the accuracy is gauged relative to the
practical issue. In other words, acknowledging the insight of Box (1979) that “all models are wrong, but some are
useful”, how can | assessM(y|x, 0) is useful? | propose a new application of tBayesian sampling approacb

that question in this article. | give a rationale for the methodology in Section 2 and describe my graphical application
of it in Section 3. | provide details for normal linear models in Section 4 and additive models in Section 5. Section 6
contains a discussion.

2 Rationale

2.1 Bayesian model checking diagnostics

To introduce ideas and keep notation concise, consider assessing how well avined®l(y|0) fits some potential
datay = (v1,...,yn)", wheref is assumed to have a prior probability distribution. Box (1980) proposed a Bayesian
diagnostic for checkingyl based on the following. Conditional dd, the marginal, or predictive, distribution gfcan

be described by its density

F(yIM) = / £(y16.M) £(6]M) d6 (1)

where f(y|0, M) is the likelihood fory and f(8|M) is the prior density of. Once actual datg, are availableM
can be assessed by referring the value of the predictive densgjty #ty,|M), to the density functiorf (y|M). One
way to do this is to calculate

a = Pr(f(yM) < f(yqlM)) )

where the probability is calculated unddr A “small” value of « indicates thagy; would be unlikely to be generated
by M, and thus callM into question. More generalliyl can be assessed by referring the value of the predictive
density of some relevant checking functian(y), aty, to its predictive density, for a variety @f. Examples of
usefulg; in practice include residuals, order statistics, and moment estimators.

Box’s approach can only be used with proper priors, since otherwise (1) does not exist. Rubin (1984) proposed an
alternative approach that does not require proper priors, using the posterior predictive density

F(yly M) = / £(410, M) £(8ly,, M) d6

where f(0]y,, M) is the posterior density df. Again, diagnostics similar to (2) and checking functignsan be
constructed. Rubin’s approach has been extended by Gelman, Meng, and Stern (1996).

2.2 A sampling interpretation

Another way to think about Box’s approach is in terms of a sampling simulation. Gelman, Meng, and Stern (1996)

provide references to many papers that discuss this interpretation. The idea is to draw a ¥hfoenofts prior

distribution, and then generate a sample:a€alizations from the modéll indexed by thi®). Repeat this process a

large numbern of times and then compare the datato them realizations fromM. Then, intuitively, ify,; “looks

like” a typical realization fromM, there is no reason to doubt the fitldf On the other hand, i, appears to be very

“unusual” with respect to the: realizations fromM, thenM is called into question. To do this in practice, methods

for comparingy, to them realizations fromM and measures of “unusualness” need to be developed. But once done,

the methodology can be applied in any situation where samples can be generated from the prior distrib@itibn for

particular, the methodology can be applied in situations where quantities such as (2) cannot be derived analytically.
Rubin’s approach can also be cast in sampling terms, with each valli@mawn from its posterior rather than

prior distribution. The crucial difference between the two approaches can therefore be considered in terms of the



choice of “sampling distribution” fof used to generate realizations fravh This indicates that the two approaches
are attempting to address slightly different questions:

e Box considers if the data are consistent with a family of models indexed by parameters whose variability is
modeled only by prior beliefs. For example, (2) contrasts information frorptioe and data, and checks their
compatibility.

e Rubin considers if the data are consistent with a particular mibdélhas been fit to the datand which is
indexed by parameters whose variability depends on both data and prior beliefs. Diagnostics similar to (2)
contrast information from thposteriorand data, and check their compatibility.

Thus, the two approaches differ on h@wand the data are being viewed. If, wh&hholds for the data, the
information in the data is to be used to update belief aBdig, to obtain its posterior distribution), Rubin’s approach
is more appropriate. If not, and belief abdlis to remain the same regardless of the information in the data, Box’s
approach ought to be used. Box’s approach would therefore be used in a situation where prior knowleige is
established This does not necessarily correspond to a prior distribution with small variance. Box (1980) described
the problem of assessing a normal model for estimating the mdana single batch of manufactured items, where
w is assumed to arise from a normally distributed industrial process with mgeand variancer2. Knowledge about
the industrial process could be well-established but the prior distributiop foight have large variance (ie large
batch-to-batch variation).

Nevertheless, as prior information becomes more vague, it seems unlikely that information from the data would
not be used to update belief aba@if(that is, whenM holds and the data havelevantinformation abou®). With
Box’s approach, any particulay, will become less likely to calM into question, as prior information, and hence the
predictive distribution ofy, becomes more vague. As mentioned earlier, in the limit with an improper prior, Box’s
approach cannot even be used.

Some aspects of the model being checked may depend orhitsalf, rather than on a sample ofrealizations
from the modeM(8). For example@ might represent predicted values fpunderM. If model-fregoredicted values
were available, these could be compared directly withBtsamples to assess the fit of the model.

3 A graphical application

3.1 Marginal model plots

I now return to the regression setting of Section 1 to apply the ideas in Section 2 to a particular graphical method for
comparingF (y|x) to M(y|x). Following on from Cook and Weisberg (199F)y|x) = M(y|x) for all values ofz
in its sample space if and onlyT(y|h) = M(y|h) for all functionsh = h(x). So, a comparison betweéliy|x) and
M(y|z) can be made by comparing characteristicE f| ) andM(y|h) for varioush. Particular characteristics that
can be useful to compare include mean and variance functions.
To compare mean functions for example, pjotersush for a particularh. Add a non-parametric mean estimate,
say a cubic smoothing spline with fixed smoothing parameter, to the plot; denote ﬂﬁiﬁ(@bﬁ) whereEr denotes
expectation unddr. The correspondlng mean estimate unideis E, i(y|h), whereEg; denotes expectation undet.
SinceEg (y|h) = E[E M(y|a:)|h] M(y|h) can be obtained from a non- parametnc mean estimate for the regression

of the fitted values undeé¥i, Eg (y|x), onh. Add EM(y\h) to the plot W|thEF(y\h) to obtain amarginal model plot
(MMP) for the mean in the (marginal) directign Using the same method and smoothing parameter for the mean
estimates undeyl andF allows point-wise comparison of the two estimates, since any estimation bias should cancel
(Bowman and Young 1996).

Ideas for selecting useful functionsto consider in practice are given in Cook and Weisberg (1997), and include
fitted values, individual predictors, and linear combinations of the predictors. Further discussion of this issue is
prominent in thedimension-reductiotiterature, and work is in progress to develop complementary techniques in
this context. Some examples incluggncipal Hessian directionsdue to Li (1992), andgliced average variance
estimation due to Cook and Weisberg (1991), which can often find functiomdere lack of fit is most likely to be
observed. IfM is an accurate approximation K then for any quantity the marginal mean estimates should agree,
Er(y|h) = Eg (y|h). Any indication that the estimated marginal means do not agree for one partiadéis M into
guestion; if they agree for a variety of plots, there is supporMor



3.2 Bayes marginal model plots

A problem that arises with using MMP’s in practice is deciding, relative to the variation in the data, when the estimated
marginal means agree and when they do not agree. How large do discrepancies between the estimated marginal means
have to be to calM into question? Porzio and Weisberg (1999) provide frequentist methodology to address this issue:
point-wise reference bands to aid visualization and statistics to calibrate discrepancies. An alternative approach is to
apply the ideas discussed in Section 2.

Even if M(y|x, 8) = F(y|x), the estimated marginal means in a MMP would not match exactly. So, a technique
is needed to visualize the variability M to assess whether it would be reasonable for the data to be generated by such
an M. The sampling interpretation for the Bayesian model checking diagnostics of Box and Rubin provides such a
technique: for any particular MMP, just calculate mean estimates for fitted values corresponding to individual samples
from either the prior distribution (under Box’s approach) or posterior distribution (under Rubin’s appro&ch)en,
instead of adding the mean estimate undeto the plot of the mean estimate undgradd a mean estimate for each
sample fromM, and obtain what | call 8ayes marginal model plgBMMP) for the mean. These plots were called
Gibbsmarginal model plots in Cook and Pardoe (2000). #reamples are being used directly here, as suggested in
the final paragraph of Section 2.2.
__ If enough samples are taken, say = 100, the Bayes mean estimates will form a mean estirbated under
M. The plot then provides a visual way of determining whether there is any evidence to contradict the possibility
thatF(y|h) = M(y|h). If, for a particularh, the mean estimate undBrlies substantially outside the mean estimate
band undeiM, thenM is called into question. If, no matter what the functibiis, the mean estimate undErlies
broadly inside the mean estimate band undethen perhap31 provides an accurate description of the conditional
distribution ofy|x.

4 Normal Linear Models
The normal linear regression model can be written

yilei = E(y|x;) + ei//wi, i=1,...,n

whereE(y|x;) = BT x;, Bis ap x 1 vector of unknown parameters; is thep x 1 vector of predictor values for
thei-th observation, the erroes are normally distributed with mean 0 and variancg and the weightsy; > 0 are
known, positive numbers. An intercept term can be included within this framework by setting one of the predictors
equal to a constant. Defining = (x,,...,z,)", 8 = (87,6%)7, andW = diagw;), then (suppressing the
notation for conditioning oMM for clarity)

yl(X.0) ~ N (XB.0*W™)

The usual non-informative prior for the normal linear regression modg{@#3 « o~2. Consider constructing
BMMP’s in this situation. Since the prior is improper, only Rubin’s approach is appropriate. Sampling from the
posterior is straightforward singd3, o2|(X,y,)) = f(Bl(X,y,, %) f(c?|(X,y,)). In particular, draw a value of
o? from

02 | (Xv yd) ~ RSS@(;EP

where RS&;EP is the usual weighted residual sum of squares divided p¥mndom variable with — p degrees of

freedom. Then, holding? fixed, draw a value o8 from
BI(X, y4,0%) ~ N (B, (X" W X))

where@ = (X Twx )TlX TWy is the usual weighted least squares estimat@fdFhe fitted values corresponding
to the posterior samplgs, areX3,,t =1,...,m.

This procedure is straightforward to program. | developed S-PLUS functions to generate the appropriate posterior
samples from a linear model object, and to construct corresponding BMMP’s for the mean in any user-specified
directionh. | use thesmooth.spline function (Hastie and Tibshirani 1990) to obtain the non-parametric mean
estimates with user-specified smoothing parameterRecall that the smoothing parameters for all smooths in a
particular BMMP need to be equal to allow their point-wise comparison. Therefore it is desirable tosstect



that the smooths are flexible enough to capture the systematic trends in all the corresponding scatterplots, while not
over-fitting too much in any one scatterplot. This is clearly impractical, so a prudent compromise is to graphically
selecty to capture the systematic trends only in the scatterplots for the data aJXJBorAn alternative is to select

~ automatically, for example by using the most flexible of the smoothing parameters chosen by cross-validation for
a subset of the corresponding scatterplots. Given the sometimes erratic behavior of automatic smoothing parameter
selection methods, | prefer to use the graphical approach using the plots of the dxéanqbractice.

Consider an example on the effects of three variablé8] = log,,(air to naphthalene ratjp Ctime =
log;o(contact timg, and Btemp = 0.01(bed temperature- 330), onY = percentage mole conversion of naph-
thalene to naphthoquinone. The data arose from a chemical experiment in the 1950’s to develop a catalyst in the vapor
phase oxidation of naphthalene. The variable transformations used result in approximate trivariate normality and ap-
pear to stabilize the yield surface. Box and Draper (1987) based an analysis of the data on a full second-order response
surface model. BMMP's for the mean in the direction of the fitted values for both a first-order linear model and the full
second-order linear model are shown in Figure 1. | selegtgaithat the smoothing splines had fafifective degrees
of freedom(Hastie and Tibshirani 1990) in both plots.
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Figure 1: BMMP’s for the mean in the direction of the fitted values for the naphthalene data.

The BMMP for the first-order model shows the mean estimate uRdging mostly outside the mean estimate
band undeM. This provides clear evidence to call this model into question. The BMMP for the second-order model
shows the mean estimate undelying inside the mean estimate band undér There is little evidence ithis plot
to call this model into question. In fact, BMMP's for the second-order model in a variety of directiathappear to
have this characteristic. So, using this graphical diagnostic technique, there appears to be no compelling evidence to
question the second-order model. | will return to this example after discussing a method for constructing BMMP’s for
additive models.

5 Additive Models

The additive regression model can be written

P
yilwi =+ filwy) +e, i=1,....n
j=1

wheref; is a “smooth” function for thg-th predictor,z;; is thei-th observation of thg-th predictor, and the errors

e; are normally distributed with mean 0 and varianée Definingé = («, f1, ..., f,,0%)T, then
P
Yl(X.0)=ad,+> f;+e ®3)
j=1



wheredJ,, is an nx 1 vector of onesf; = (fj(z1;),. .-, fi(zn;))T, ande is ann x 1 vector of errors.
Hastie and Tibshirani (1990) describe a Bayesian characterization of (3) based on partially improper normal pro-
cess priors for eaclfi;

2 —
£ ~ N0, T2K7)

where0,, is an nx 1 vector of zeros, ancK; is a generalized inverse of a matr ; which is related to the
construction of the estimate ¢f;. For example, wherf ; is estimated using a symmetric smoother ma#ixwith
smoothing paramete;, thent? = o°/);, andK; = X\;(S; — I.,)~, wherel,, is then x n identity matrix.

Consider constructing BMMP’s in this situation. Rubin’s approach is appropriate here if most of the information
abouté is going to come from the data rather than the prior. Also, the prioffoan be improper if any of th¢ ;
correspond to fixed linear effects, thus necessitating Rubin’s approach. Hastie and Tibshirani (2000) derive a way to
sample from the posterior #fusing a stochastic generalization of the backfitting algorithm based on Gibbs sampling.

In particular,f; has posterior

Fil(X,yq) ~ N(S;y,,0°5))

Then, witho? and each—j2 held fixed, posterior samples are generated by adding aﬁ%@z, wherez is ann x 1

vector of standard normal random variables, to the partial residual smooths in the backfitting algorthandfeach

’7']»2 are not held fixed, conjugate inverse gamma priors lead to inverse gamma conditional sampling stégsébr

eachr? in the algorithm. The fitted values corresponding to the posterior sarfiplgs , - . ., f,): area,J,, + f1; +

o+ fu, t =1,...,m. Hastie and Tibshirani developed S-PLUS functions to carry out their sampling procedure. The
code discussed in Section 4 can then be used to construct corresponding BMMP’s for the mean in any user specified
directionh.

Consider the naphthalene data again. The full second-order linear model appears to provide a good fit to the data,
but other regression diagnostics suggest some deficiencies. In particular, although all the coefficient estimates are
highly significant, three observations with large Cook’s distances have a relatively strong influence on some of these
estimates. Also, there are hints of dependence in some residual plots. Cook (1998) suggests that the dep&hdence of
on the predictors is through the single linear combination 0.397AN + 0.445Ctime + 0.802Btemp. Applying
Box-Cox response transformation methodology, a linear model with transformed regmgf¥Seand single predictor
x may provide an improvement on the second-order model. Alternatively, an additive model with regpande
predictorz may prove more accurate. BMMP’s for the mean in the directiom &r both the linear and additive
models are shown in Figure 2. | selectedo that the smoothing splines had four effective degrees of freedom in both
plots. The posterior sampling for the additive model was carried outatitlixed at the unbiased estimate from the
additive model fit and the effective degrees of freedom for the smootfi fixed at four.
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Figure 2: BMMP's for the mean in the direction effor the naphthalene data.

The BMMP for the linear model with transformed response and predichas a similar flavor to the BMMP for
the second-order model in Figure 1, although the mean estimate Hrigera little closer to the edges of the mean



estimate band und@d. This feature was similar for other directiohsalso. This indicates that the linear model with
transformed response provides a fit that appears to be almost as good as the fit provided by the second-order model,
and, since it is a much simpler model, it might be preferred on parsimonious grounds. As with the second-order model
however, further regression diagnostics indicate that this model too has hints of dependency in some residual plots.
The BMMP for the additive model shows the mean estimate uRdging well inside the mean estimate band under

M. There is little evidence ithis plot, or indeed in other BMMP’s for the mean in alternative directibn® call this

model into question. Further regression diagnostics indicate that this model provides a good fit to the data with no
clear deficiencies.

6 Discussion

BMMP's for the mean offer a quick and easy way to check models graphically. The sampling needs to be done
only once for each model and cycling through BMMP’s in a variety of directiopsovides guidance on the fit of

the model. The methodology can be extended to variance function estimates to provide further ways for checking
models. MMP’s can easily be constructed for other types of regression model such as generalized linear models; using
techniques such adarkov chain Monte Carldéo sample from the posteriors of the model parameters allows BMMP’s

to also be constructed for such models.

The examples | considered for normal linear models and additive models adopted Rubin’s approach using posterior
sampling. An example where Box’s approach using prior sampling might be more appropriate is in a situation where
follow-up data were being analyzed for a model that has been fit to previous data.

There are other plots used in the area of regression diagnostics that can be difficult to assess relative to the variation
in the data. Examples include: residual plots; CERES plots, which are a generalization of partial residual plots and
were introduced by Cook (1993); net-effect plots, which aid in assessing the contribution of a selected predictor to a
regression and were introduced by Cook (1995). The ideas discussed above would appear tdlaawekay in the
analysis of such plots. Work is in progress on these issues, as well as on developing supplementary Bayesian inference
methodology.

Further work is also in progress on making the graphical technique described in this article more precise. In
particular, deciding whether the mean estimate utitiégs substantially outside or broadly inside the mean estimate
band undeM can be a highly subjective process. If it is decided thaktlestimate is outside thd estimate band, the
nature of the discrepancy may also provide some guidance on how a better model might be developed. For example, a
BMMP may exhibit clear discrepancy as a result of just a few observations in the data—these observations may need
to be treated differently to the remainder of the data in drawing overall conclusions.
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