
Proceedings of the 2006 Winter Simulation Conference
L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, eds.

STOCHASTIC SHIPYARD SIMULATION WITH SIM YARD

Oliver Dain, Matthew Ginsberg, Erin Keenan,
John Pyle, Tristan Smith, Andrew Stoneman

On Time Systems
1850 Millrace Drive, Suite 1

Eugene, OR 97403

Iain Pardoe

Charles H. Lundquist College of Business
1208 University of Oregon

Eugene, OR 97403∗

Abstract

SimYard is a stochastic shipyard simulation tool designed
to evaluate the labor costs of executing different schedules
in a shipyard production environment. SimYard simulates
common production problems such as task delays and labor
shortages. A simulated floor manager reacts to problems
as they arise. Repeatedly simulating multiple schedules
allows the user to compare the schedules on many different
metrics, such as expected labor costs and the probability
of missing the deadline. A SimYard simulation is driven
by many inputs that describe the shipyard being simulated.
Determining the correct values for these inputs can be framed
as a multivariate calibration problem, which can be solved
using inverse regression methods. Predictive sampling from
the resulting model provides an appropriate adjustment for
statistical uncertainty.

1 INTRODUCTION

Billions of dollars are spent annually on construction, refit,
and repair of ships and submarines. The problem of de-
veloping schedules that make efficient use of resources is
critical, both to control costs and to meet shipyard needs
without exceeding the available resources, such as time,
dry-dock space, or increasingly scarce skilled manpower.
Both construction and maintenance are extremely complex
processes, involving thousands of activities with thousands
of constraints among them. This complexity makes it vir-
tually impossible for people to construct good schedules
without the aid of software tools.

Software scheduling tools take a database of project
information that includes a description of each task to be
performed, and the constraints thereon. The task descrip-
tions include information such as the expected task duration
and the resources required to complete it. The constraints
include both binary (or precedence) constraints and unary

∗The authors thank David Etherington, R. Dennis Cook, and Christo-
pher Bingham for helpful discussions.

constraints. Binary constraints specify a relationship be-
tween two tasks. Thus a binary constraint between tasks A
and B might specify that task B cannot start until two days
have passed since task A was completed (to allow primer to
dry before painting for example). Unary constraints specify
constraints that affect only a single task. For example, we
might specify that a task cannot start before a certain date
(to account for the availability of materials).

A schedule is an assignment of start times to tasks.
There are many ways to arrange the tasks in a project into
a schedule that honors all the constraints and the project
deadline. Some schedules will incur higher labor costs than
others, and some schedules will be more robust than others.
For example, one schedule might work two tasks that each
require five welders during January. This schedule might
then require no welders until March 1, at which point five
welders will be required. In order to execute this schedule,
it would be necessary to either lay off all ten welders on
February 1 and then hire five welders on March 1, or
lay off five of the welders on February 1, and pay the
remaining five welders for the month of February during
which they accomplish no useful work (this is referred to as
an “undertime” cost). Both options incur costs. A different
schedule might delay one of the tasks that was scheduled to
work in January so that it starts in February. This schedule
would require a constant level of five welders and avoid
the hiring, firing, and undertime costs associated with the
original schedule. However, delaying one of the tasks might
make the new schedule more brittle. If something goes
wrong with the delayed task, we might miss the deadline or
incur higher overtime costs as workers struggle to correct
the problem in time.

Given a set of candidate schedules it is difficult to know
which is the best in a real production environment. Because
the cost of building a ship is so high it is not possible to
build the same ship several times with different schedules
and compare the results. Even if it were possible, external
factors such as absenteeism would obscure the comparison.



Dain, Ginsberg, Keenan, Pardoe, Pyle, Smith, and Stoneman

SimYard is a shipyard simulator that is designed to
virtually “build” the same ship over and over, using the
same or different schedules. SimYard models shipyards,
including stochastic variability and the methods yards use
to manage that variability. SimYard includes a virtualFloor
Manager whose job is to make intelligent local repairs to
the schedule in response to deviations that occur in practice.

Given a model of shipyard behavior, SimYard repeat-
edly executes the schedule under realistic conditions and
estimates the total cost of each “build”. Given enough such
samples, we can derive estimates and confidence intervals
for labor costs. In addition, the brittleness of schedules can
be gauged in a variety of ways, such as the variance in
the estimated cost over the set of simulations, the average
amount by which the deadline is violated, and the average
number of overtime hours required are good indicators of
robustness. Since SimYard can repeat this process for dif-
ferent schedules, it is also possible to compare the likely
cost of executing different schedules.

A single SimYard run is controlled by a number of input
variables. Most of these control the probability distributions
used to generate random numbers during the simulation.
For example, there are two inputs to control the average
and standard deviation of the factor by which task durations
should be altered from their predicted values. These values
are fixed for the duration of a single SimYard run. Given
the mean and standard deviation, we have a probability
distribution that can be used to generate random numbers.
The random numbers are then used to perturb the task
durations for each task in the project. The values of the
input variables are specific to the shipyard being simulated;
a yard that consistently underestimates how long it will take
to complete a task would have a value greater than one for
the mean task duration deviance factor, while a yard that
consistently overestimates would have a value less than one.

Determining the correct values to use for the input
variables requires performance data indicating how the yard
actually executed a schedule. Given a set of performance data
it is necessary to determine a range of inputs values that are
likely to have generated the observed data. Discovering how
input variables map to observable behavior (output variables)
requires running SimYard many times with randomly chosen
inputs picked from a reasonably large domain. SimYard
uses this data and the performance data to estimate a range
of inputs that are representative of the actual shipyard.

The SimYard simulator differs from other recent ship-
yard simulation projects (McLean and Shao, 2001; Williams
et al., 2001; Asok and Aoyama, 2005; McDevitt et al.,
2003), in three important respects. First, these other studies
simulate at a more fine-grained level (including physical
constraints such as crane alignment and shop-floor space),
but at the cost of simulating entire shipyards for only very
limited periods of time. Second, previous work has had
only limited success in simulating behavior that matches

observed real-world behavior; this is a major challenge that
we address in this article. Finally, none of these other
projects includes the ability to adapt to real-world changes,
as we do with the virtualFloor Manager and Personnel
Manager; we believe these components are crucial, given
our observations of actual shipyards.

Section 2 gives an overview of a single simulation.
Section 3 explains how the input variables are estimated.
Results of runningSimYard on real project data are presented
in Section 4.

2 SHIPYARD SCHEDULING AND SIMULATION

The simulator in SimYard takes a shipyard schedule and a
set of inputs. It then steps through a project while simulating
changes that arise and shipyard responses to those changes.
For example, on the day an activity is started, it might
be discovered that more workers are needed than were
anticipated; this might result in other activities being delayed.
Each simulation produces corresponding outputs.

The inputs describe how the shipyard operates and
consist of forty two variables. The outputs measure the
outcome of an execution of a schedule and consist of twenty
variables. Some, like the perceivedcost of pausing a task that
is in progress, are only inputs. These affect the simulation,
but are not directly measurable. Others, like the fraction of
tasks that were paused, are outputs only. These are directly
measurable in performance data and the simulation results.
Values can also be both inputs and outputs. For example,
the measure of how task durations deviate from predictions
are inputs which affect the simulation and are also directly
measurable in performance data.

Most of the input variables describe a distribution.
For example, there is a mean and standard deviation for
task duration changes. During simulation a pseudo-random
number is generated for each task. The random number is
drawn from the distribution described by the task change
input variables.

The input and output variables can be divided into five
groups:

1. Costs: these are all outputs and include the total
cost and components of the total cost such as
overtime cost and workforce acquisition cost. The
cost will be different for each run as variables such
as task delays, worker absenteeism, and changes
in manpower requirements will change.

2. Shipyard Unpredictability: These are all inputs,
except for duration change values which are both
inputs and outputs. This groups controls the dis-
tributions on the number of workers who will be
sick in a day, how often tasks are delayed, and
how much notice the shipyard will get that a task
is going to be delayed.



Dain, Ginsberg, Keenan, Pardoe, Pyle, Smith, and Stoneman

3. HR Issues: These are primarily inputs that control
the human resources department. These include the
cost to hire and fire workers, the frequency with
which staffing changes can be made, how much
staffing should be above or below the projected
labor levels, and the amount of overtime workers
are allowed to work. This category also includes
outputs that track the total amount of overtime
worked on the project.

4. Shipyard Timing: These are primarily outputs
that measure how often tasks were paused mid-
execution, what percentage of tasks were paused,
and the amount of free float that was present in
the worked schedule (free float is the amount of
time a task could be delayed without affecting any
other tasks). The category also includes inputs
describing the perceived cost to pause a task.

5. Cheating: While a project describes constraints on
tasks, it is not uncommon for a yard to violate
some of the constraints described in the project.
Presumably there is a cost to violating a constraint.
SimYard thus includes several inputs that describe
the perceived cost of breaking binary, unary, release
date, major milestones, and deadline constraints.

Section 3 explains how values are determined for the inputs.
For the moment we assume we are given values and focus
on how a single simulation proceeds. The simulator consists
of three main components:

1. Reality models how things change under real-world,
yard-dependentconditions. This component makes
changes to the project based on the input variables.

2. The virtual Floor Manager adapts the schedule
in response toReality, deciding which tasks to
work on and which to put off. This component is
intended to model the actual floor manager of a
real shipyard. Therefore, the decisions made are
based on the knowledge that a real manager would
be expected to have (based on conversations with
employees in various shipyards). For example, if
work levels exceed available manpower theFloor
Manager decides if tasks should be delayed or
overtime hours assigned.

3. The virtualPersonnel Manager reacts to the overall
changes fromReality and from theFloor Manager’s
responses to those changes by revising staffing
decisions (work-force acquisition and reduction).

Each simulation begins with theReality component ran-
domly picking tasks that will be delayed. For each such
task the length of the delay, and the amount of notice the
floor manager will have of the delay are randomly deter-
mined. For example, it might be determined that task will

be delayed by five days and the floor manager will not
know that the task will be delayed until one day before it
was scheduled to start. Simulation then proceeds one day
at a time. At the start of each day theReality component
adjusts the state of the yard as follows:

• Tasks that are scheduled to start on the day in
question have their duration and manpower needs
randomly perturbed.

• The number of workers who called in sick is ran-
domly generated.

• Delayed tasks will be revealed if the current simula-
tion day falls within the task-delay-notice window.

TheFloor Manager then considers the available work force
and the tasks that are could be started. For each such task,
the Floor Manager compares the cost of working the task
today with the cost of delaying it until tomorrow. The cost
calculation includes the manpower costs (including overtime
and undertime) as well as the perceived cost of putting off
the work. For example, putting off a task that has already
started involves pausing the task, and it might also involve
violating one or more constraints. Each task has had a
pause cost and constraint violation costs randomly assigned
according to the input distributions. If the cost of putting
off the work appears less expensive than the cost of doing
the work today, the task will be put off. The fourth time a
task is put off it will be moved into the future far enough
for the Personnel Manager to react to it and hire workers.
ThePersonnel Manager reviews staffing levels periodically.
The frequency with which staffing levels are reviewed is
determined by an input variable. If thePersonnel Manager
decides to increase or decrease the staffing level it cannot
be done immediately; there is a lag between the decision to
change staffing levels and the levels actually changing. This
lag is determined by another input variable. When hiring
workers the lag models the delay between posting a job and
the availability of trained workers. Similarly, it is generally
not possible to fire or reassign workers immediately.

The simulation continues until all tasks in the project
have been completed. At this point it is possible to calculate
all the output values, including all the labor costs. Running
the simulation many times makes it possible to estimate the
probabilities of the output variables. If multiple schedules
are simulated many times, it is possible to compare the
schedules for cost and robustness.

3 Determining Input Values

One of the challenges in developing SimYard was deter-
mining a procedure for “tuning” it by selecting appropriate
sets of inputs so that its behavior matches that of an actual
production shipyard. The problem is that many inputs can-
not be obtained from existing data. For example, if a task



Dain, Ginsberg, Keenan, Pardoe, Pyle, Smith, and Stoneman

requires more work hours than expected, theFloor Manager
could assign overtime, rearrange other tasks, or postpone the
task in question. The likelihood of each decision depends
in turn on other factors; postponing the task, for example,
may depend on how willing theFloor Manager is to break
deadlines or constraints with other tasks. Quantifying,a
priori, the input values that determine this behavior (for
example, the perceived cost of missed deadlines) is almost
impossible.

Therefore, given performance data for a real project that
has been completed, the goal is to create sets of inputs for
which SimYard’s behavior on the project would be similar to
that observed in the performance data. One way to approach
this is to try to model the relationship between inputs and
outputs in SimYard. However, estimating such a model and
then finding appropriate inputs is not straightforward for
several reasons:

• Many inputs are not outputs. Therefore, observed
performance data will not indicate what settings
should be used.

• Other variables are outputs only. There will be
observed values for these and an accurate SimYard
should result in similar output values. Achieving
this restricts how the inputs can be used.

• Many variables are interdependent.
• Because the simulation is stochastic, it is impossible

to calculate exact relationships between the inputs
and outputs from a randomly generated sample of
SimYard runs.

• As there are more inputs than outputs, there is a
variety of input values that should yield identical
measured outputs. It will be necessary to char-
acterize the portion of the input space that yields
the desired outputs so that SimYard can be run on
many points in this space to produce accurate cost
estimates.

These restrictions suggest a statistical modeling approach.
Given a project and a schedule one can generate data suit-
able for building a statistical model by running SimYard
thousands of times on randomly selected input values. Each
run will yield a pair of vectors,(Xi, Yi), relating the inputs,
Xi, used in the run to the outputs,Yi, produced by the run.
Given this data the challenge is to build a suitable statistical
model that relates inputs and outputs, so that an appropriate
set of inputs can be generated (sampled) for any given set
of outputs (i.e., real shipyard data). The model needs to be
stochastic rather than deterministic to account for model-
ing uncertainty (the model can only hope to approximate
SimYard relationships, not replicate them exactly).

A SimYard evaluation thus consists of five steps:

1. Run SimYard many times with different, randomly
generated, inputs on a schedule that was actually
used to construct a ship.

2. Build a statistical model relating inputs to outputs.
3. Given performance data from the actual construc-

tion that followed the schedule used in step (1),
use the model developed in step (2) to generate
a probability distribution over the input variables.
This distribution indicates the joint probability that
any set of input variables generated the observed
performance data.

4. Randomly generate input values according to the
probability distribution generated in (3).

5. Use the input values generated in (4) to run SimYard
on one or more schedules.

If performance data is not available it is still possible to
perform the first two steps. The statistical model devel-
oped in step (2) is valuable even if the other steps are not
performed, as it indicates how certain input values affect
observable shipbuilding metrics. For example, the model
might indicate that incorrect estimates of task duration are
an important driver of total cost and missed deadlines. This
type of knowledge may help a yard control its business
practices. A detailed discussion of the statistical modeling
used in step (2) appears in the next section.

3.1 Calibration and Inverse Regression

Given a set of(Xi, Yi) pairs, we must generate a statistical
model. A multivariate regression model with outputs as the
dependent variables and inputs as the independent variables
might seem a natural way to approach the problem, but runs
into difficulties because there are many more inputs than
outputs. For example, solving twenty linear equations (one
for each output) for forty two unknowns (the inputs) leads to
a high-dimensional space of possible solutions. Sampling
correctly from this solution space is not straightforward.
Further, based on initial work using this approach, the
solution space often leads to implausible ranges for the
input variables. An alternative approach seems prudent.

If, in tuning SimYard, both inputs and outputs can
be considered stochastic (a reasonable assumption here),
then inference about the joint probability distribution of
inputs and outputs can also be based on multivariate “in-
verse regressions” of inputs (dependent variables) on outputs
(independent variables). This approach is particularly ad-
vantageous in this context, because it is straightforward to
calculate expected input values from observed output values
using the estimated (inverse) regression results. Uncertainty
is accounted for using standard formulas for prediction (con-
fidence) regions. Also, having the number of inputs exceed
the number of outputs does not lead to problems with this



Dain, Ginsberg, Keenan, Pardoe, Pyle, Smith, and Stoneman

approach since the prediction region formulas automatically
handle this.

Thus, we used an inverse regression approach to tune
SimYard. In particular, we first sampled a large number (two
thousand) of sets of inputs from appropriate distributions.
To allay concerns over biasing the simulations, these were
selected to be uniform over reasonable, meaningful ranges
for each input variable (some inputs were also transformed
if, for example, they were constrained in reality to be
positive). (We also experimented with Latin hypercube
sampling (McKay et al., 1979) to sample the inputs, but this
made little difference to our results or computing times.)
SimYard then produced a set of outputs for each set of
inputs (this is step (1) as described in Section 3). The
entire collection of simulated inputs and outputs was then
modeled using inverse regressions of the input values on
the output values.

The goal of identifying which inputs are most likely to
have produced some actual observed outputs, bears some
similarities to multivariate calibration problems. There, the
“inputs” might be “gold standard” (hence expensive) mea-
surements of some kind and the “outputs” are inexpensive
alternative measurements. The goal is then to build inverse
regression models relating the gold standard measurements
to the inexpensive alternative measurements, so that future
alternative measurements can be accurately recalibrated.
Brown (1982) reviews the inverse regression procedure em-
ployed by SimYard in this context.

To understand this approach, consider a hypothetical
example where there are six inputs, (X1, . . . , X6), and
three outputs, (Y1, Y2, Y3). Furthermore suppose the true
relationship between the inputs and outputs are given by
the following:

Y1 = X1 + X2 + e

Y2 = X3 + e

Y3 = X4 + e

Here,e represents 1% random error. Note that two inputs,
X5 andX6, do not affect any outputs.

It is straightforward to generate a large number of ob-
servations from this setup, with the inputs ranging uniformly
over [0,1]. The resulting input and output values can then
be used to estimate inverse regression models ofX on Y .
Finally, given a particular set of observed output values, say
Y1 = Y2 = Y3 = 0.5, the estimated inverse regression mod-
els can be used to generate a large number of appropriate
“likely” input values (drawn from the predictive distribution,
see Section 3.2).

We ran this experiment using the R statistical software (R
Development Core Team, 2005) to produce the scatterplots
in Figure 1.

The generated values ofX1 andX2 in the left-hand plot
show that they satisfy the first linear equation,X1+X2 = 0.5
(with a small amount of variation due to error). The values
of X3 and X4 in the center plot show that they correctly
cluster tightly around 0.5 (which is required to satisfy the
second and third linear equations). Finally, sinceX5 and
X6 do not affect the outputs, the right-hand plot correctly
shows sampling approximately uniformly over the range
[0,1].

3.2 Predictive Sampling

Step (4) of a SimYard evaluation, as explained in Section
3 requires us to generate random input values according to
the joint probability distribution generated by the model de-
scribed in the previous section. While it is straightforward
to calculate expected input values from observed output
values using the estimated (inverse) regression results, it
is not immediately obvious how to generate a set of pos-
sible input values from an appropriate prediction region.
The multivariate probability distribution required for draw-
ing these predictive samples, a matrix-t distribution (Raiffa
and Schlaifer, 2000; Keyes and Levey, 1996, pp. 256), is
non-standard and reasonably difficult and computationally
intensive to sample from. Due to the relatively large size of
the simulations, we therefore used a multivariate normal dis-
tribution (which is easy to sample from) as an approximation
here. Since the number of input/output observations used
to tune SimYard and estimate the inverse regression models
is two thousand, this should be a reasonable approximation.

3.3 Further Validation of the Regression Model

In order to confirm the correctness of the inverse regression
models, we randomly selected SimYard output values and
checked if SimYard simulations based on input values gen-
erated from the corresponding inverse regression models
actually produced output values similar to those initially
selected. In particular:

1. We ran one thousand SimYard simulations using
the default uniform input ranges to generate corre-
sponding outputs, and then estimated the inverse
regression models (based on the one thousand sets
of inputs/outputs).

2. We selected one of the thousand runs at random
and used the output values produced by that run
as assumed “real” performance data.

3. We used the predictive sampling (of Section 3.2) to
produce one hundred sets of “likely” input values
that could have produced the selected set of “real”
output values.



Dain, Ginsberg, Keenan, Pardoe, Pyle, Smith, and Stoneman

Figure 1: Scatterplots for the hypothetical six input/three output experiment showingX1 vs. X2, X3 vs. X4, andX5 vs. X6,
respectively.

4. We ran a SimYard simulation for each of these
one hundred sets of input values to produce one
hundred corresponding sets of output values.

5. Finally, we looked at these one hundred sets of
output values and compared them to the origi-
nal randomly selected set of “real” output values.
In particular, for each output, we calculated the
percentile of “real” output value in the SimYard
simulation values (e.g. if the “real” value was the
highest value produced its percentile is one hun-
dred. If the “real” value is the median of the values
produced its percentile would be fifty).

6. We repeated steps 2-5 one hundred times to obtain
an estimate of the distribution of percentiles (from
step 5) for each output.

Since SimYard is stochastic, any particular output value
will differ from its predicted value based on the inverse
regression models. If it is close to its predicted value, then
the percentile in step 5 should be close to 50%. If it is far
from its predicted value (i.e., it is somewhat of an outlier),
then the percentile might be closer to 0% or 100%. However,
on average, repeating this experiment should, if SimYard
is not producing biased output values, result in percentiles
centered around 50% (although, as just noted, individual
values might be as extreme as zero or one hundred).

Since there are twenty outputs, there is a good chance
that with any randomly chosen set of output values, a few
could be relative outliers. We observed this in the above
experiment; as expected the output variables with extreme
percentiles varied from experiment to experiment, and some
experiments produced no outliers. Overall however, no indi-
vidual outputs exhibited a tendency to consistently produce
extreme percentiles. For example, Figure 2 shows a his-

Figure 2: Histogram of percentiles for a randomly selected
output value with respect to SimYard simulations of that
particular output.

togram of the percentiles produced for one particular output.

This exhibits the desired behavior, being centered at
50% with no particular tendency to always produce extreme
percentiles close to 0% or 100% (such a tendency would
correspond to a bias on the part of SimYard for the corre-
sponding output). Other outputs produced broadly similar
results, with none showing signs of severe bias.

4 RESULTS

SimYard was run on a project obtained from a commercial
shipyard for a single large hull consisting of over seven



Dain, Ginsberg, Keenan, Pardoe, Pyle, Smith, and Stoneman

Figure 3: Percentage cost savings of theARGOS sched-
ule versus the standard schedule. The curve represents a
probability density function estimate based on one thousand
observations.

thousand activities spanning seven years. The schedule used
by the shipyard, referred to as the “standard schedule”, was
compared to the schedule produced by On Time Systems’
ARGOS scheduling tool (Dain et al., 2005), referred to as
the “ARGOS schedule”.

For each schedule, we generated one thousand sets of
outputs and associated costs, as detailed in Section 3. Figure
3 shows the cost savings of theARGOS schedule relative to
the standard schedule.

Over all the simulations done, theARGOS schedule
saves between 4% and 17% of the labor costs, with most
runs saving between 7% and 13%. Figure 4 shows a
savings confidence plot for theARGOS schedule relative to
the standard schedule.

The ARGOS schedule saves more than 10% half the
time and saves more than 7% 90% of the time.

In addition to comparing the savings of one schedule
to another, the simulations described in this article enable
consideration of how those savings vary as input values
change. For example, Figure 5 shows the savings sensitivity
of the ARGOS schedule relative to the standard schedule
based on the input that measures the average change in
manpower requirements from unexpected shipyard events.

As tasks tend to require more work than expected,
the savings of theARGOS schedule go down, presumably
because the resulting uncertainty is forcing SimYard to
depend more on the floor manager and less on the details
of the original schedule. However, overall, the savings
achieved by theARGOS schedule appear to be relatively
robust to changes in input values. For example, Figure 6
shows thatARGOS savings depend little on the fraction of
tasks that get unexpectedly delayed.

Figure 4: Cost savings confidence of theARGOS schedule
versus the standard schedule, showing expected percentage
savings as a function of the confidence percentile. The
two vertical lines correspond to the fiftieth and ninetieth
percentiles.

5 DISCUSSION

SimYard was designed to simulate shipyard operations under
a variety of input conditions. It can be used to compare the
labor costs incurred by various schedules and to evaluate
the robustness of these schedules. Generating input values
that are likely to correspond to observed outputs from real
shipyard projects is accomplished via multivariate inverse
regressions to infer the joint probability distribution ofinputs
and outputs.

SimYard has the potential to provide a number of ben-
efits to shipyards. In particular, SimYard could be used
to:

• synthesize shipyard performance data and answer
questions such as “how often were tasks paused?”

• analyze input/output dependencies to answer ques-
tions such as “which factors influence the amount
by which deadlines are broken?”

• investigate hypotheses concerning shipyard behav-
ior (for example, “does advanced warning of task
delays help the yard meet the deadline?”)

• compare different shipyards based on performance
data

• help understand the impact of additional work
• select the best schedule for a project.

This potential rests heavily on whether output variable esti-
mates from SimYard can be considered accurate and reliable.
Initial experiments indicate that this is the case. The costs
estimates generated by SimYard are similar to the cost es-
timates generated by McDevitt et al. (2003) on similar data



Dain, Ginsberg, Keenan, Pardoe, Pyle, Smith, and Stoneman

Figure 5: Savings sensitivity to the input measuring the
average change in manpower requirements from unexpected
shipyard events. The box plots represent medians, upper
and lower quartiles, and tenth ninetieth percentiles for the
generated savings estimates.

(this is particularly interesting as the simulation approaches
are significantly different). Conversations with shipyard
personnel about the dependencies discovered by SimYard
indicate that the results are accurate. Furthermore, running
SimYard on several different projects from the same ship-
yard and discovering input values that could have produced
the observed outputs on those projects results in very simi-
lar inputs. The input values discovered seemed reasonable
to personnel from the shipyard in question. This indicates
that the simulation and inversion techniques employed by
SimYard are capable of discovering the true operating pa-
rameters of the simulated yard.

To further validate SimYard it would be beneficial to get
more real data and to discuss SimYard results with shipyard
personnel to make sure the results reflect reality. We are
currently working with the United States Navy to begin such
experiments. Additionally, we intend to adapt SimYard for
use in a repair environment. This will involve the ability
to handle variablity specific to repair environments such as
“open and inspect” tasks that reveal new work.

References

Asok, K. A., and K. Aoyama. 2005. Risk management
in modular ship hull construction considering indefinite
nature of tasks. InProceedings of the 12th International
Conference on Computer Applications in Shipbuilding.
Busan, Korea.

Brown, P. J. 1982. Multivariate calibration (with discus-
sion). Journal of the Royal Statistical Society, Series B
(Methodological) 44:287–321.

Figure 6: Savings sensitivity to the the input measuring the
fraction of tasks that get unexpectedly delayed.

Dain, O. M., D. W. Etherington, M. L. Ginsberg, E. O.
Keenan, and T. B. Smith. 2005. Automated scheduling
to minimize shipbuilding cost. InProceedings of the
12th International Conference on Computer Applications
in Shipbuilding, 41–54. Busan, Korea.

Keyes, T. K., and M. S. Levey. 1996. Goodness of prediction
fit for multivariate linear models.Journal of the American
Statistical Association 91:191–197.

McDevitt, M. E., M. W. Zabarouskas, and J. C. Crook. 2003.
Ship repair workflow cost model.MOR Journal 10 (3):
25–44.

McKay, M. D., W. J. Conover, and R. J. Beckman. 1979.
A comparison of three methods for selecting values of
input variables in the analysis of output from a computer
code.Technometrics 21:239–245.

McLean, C., and G. Shao. 2001. Simulation of shipbuilding
operations. InProceedings of 2001 Winter Simulation
Conference, ed. B. A. Peters, J. S. Smith, D. J. Medeiros,
and M. W. Rohrer, 870–876. Arlington: The Society for
Computer Simulation International.

R Development Core Team 2005.R: A language and
environment for statistical computing. Vienna, Austria:
R Foundation for Statistical Computing.

Raiffa, H., and R. Schlaifer. 2000.Applied statistical deci-
sion theory. New York: Wiley.

Williams, D. L., D. A. Finke, D. J. Medeiros, and M. T.
Traband. 2001. Discrete simulation development for a
proposed shipyard steel processing facility. InProceed-
ings of the 2001 Winter Simulation Conference, ed. B. A.
Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer,
882–887. Arlington: The Society for Computer Simula-
tion International.


