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Abstract:

Standard model assessment techniques such as resid-
ual plots or Akaike’s information criterion can be
difficult to use or provide limited insight into model
fit when applied in non-standard regression contexts
such as random effects or mixture models. This pa-
per considers the application of Bayesian ideas to
model choice for a large consumer preference dataset
where non-standard models appear to be needed but
it is unclear which model is most appropriate. In
addition, it is shown that suitably chosen graphical
methods can provide insights into which of a set of
competing models is most useful for different subsets
of the data.

1. Introduction

This article describes a model choice case study of an
interesting consumer preference dataset concerning
restaurant wines. A variety of count data regression
models are plausible for this dataset, but it is not
clear which model provides the most useful and par-
simonious description of the data. We apply a vari-
ety of numerical and graphical diagnostic techniques
to the model results, and in graphically presenting
these results discover that alternate models appear
to be appropriate for different subsets of the data.

Section 2 outlines the application and dataset,
while Section 3 gives details of the models consid-
ered. The focus of the paper is Section 4 which
describes the graphical and numerical model choice
techniques applied. Section 5 contains a discussion.

2. Application

The application uses wine sales data for an Ore-
gon restaurant to examine whether wine characteris-
tics, including sensory information available to cus-
tomers, influence demand. In particular, the anal-
ysis uses hedonic quantity models to evaluate the
impact of objective (origin, varietal, etc.) and sen-
sory descriptors, and price, on the choice of wine.

The data were collected at a high-end restau-
rant between the end of April and the beginning
of September 1998, a nineteen-week period. The
restaurant offers a wide selection of wines (stocking
some 1500 bottles), ranging from less expensive to
premium reserve wines. It offers wines from a vari-
ety of origins and provides a detailed wine menu for
its customers. This menu is broken down into white,
red and sparkling wines, and further subdivided into
varietal and/or origin. It also provides a description
of the sensory qualities of the wine along with the
brand, vintage, origin, and price. Sensory informa-
tion usually includes aroma, flavors, and sometimes
“mouth feel” (e.g. dry, tannic, smooth). Typical de-
scriptors for aroma and taste include different types
of fruits (berry, lemon), flowers (apple, rose), and
other food associations such as herbal, honey, and
chocolate. There are also numerous, widely accepted
terms for mouth feel, concentration, or texture that
are not associated with a taste or smell, such as big,
creamy, or heavy.

Wine prices are generally based on expert qual-
ity assessments, with adjustment for varietal, origin,
and market factors. Only in limited circumstances
can wine price be said to reflect wine quality, or con-
sumer valuation of those qualities (Combris, Lecocq,
and Visser, 2000). Many wines can be substantially
over or under priced given relative quality, due to
the great variety of wines available, supply varia-
tion, and the lack of good information on quality.

There are a number of studies that consider this is-
sue. Oczkowski (1994) uses a hedonic price model to
evaluate characteristics influencing Australian wine
prices; vintage and a vintage-varietal interaction
partly accounted for the endogeneity of quantity
supplied. Nerlove (1995) uses an index of quan-
tity purchased and technically assessed wine charac-
teristics to model preferences of Swedish wine pur-
chasers. Finally, Combris, Lecocq, and Visser (1997,
2000) use expert panel jury ratings to evaluate the
impact of characteristics on market price for a re-
gional French wine. Only two of the characteristics
were significant: whether the wine flavor was con-
centrated and whether the wine needed extended



storage (a positive factor). Further sensory charac-
teristics are significant when modeling the jury rank-
ings themselves. One possible reason for this is that
consumers lack perfect information for all charac-
teristics and are thus much more likely to use the
“objective” characteristics found on the label (ori-
gin, maker, vintage) to make choices. Alternatively,
consumer heterogeneity may result in characteristic
effects on choice or price offsetting one anther.

Red and white wines usually have different sensory
characteristics, their prices have different ranges,
and they are selected to go with different foods.
Thus, the following variables are considered sepa-
rately for 47 red and 29 white wines:

• Quantity sold in each of 19 weeks

• Price per bottle as listed on the menu, or four
times the per glass price less one dollar for wines
available by the glass (the pricing rule for such
wines used in the restaurant)

• Low price, an indicator for wines with the lowest
price of a particular varietal

• Glass, an indicator for wines sold by the glass

• Origin-Varietal, consisting of

red: seven indicators for California Cabernet
Sauvignon, California Zinfandel, Oregon
Pinot Noir, California Other1, Northwest
Other2, French Red, and Italian Red (rel-
ative to the California Merlot base)

white: five indicators for Oregon Chardon-
nay, Oregon Pinot Gris, California Other3,
Northwest Other4, and French White (rel-
ative to the California Chardonnay base)

• Ten indicators for sensory characteristics com-
mon to reds and whites: Body (full, big, lots
of), Finish (long or smooth, etc.), Oak, Rich,
Spices

• Fourteen indicators for sensory characteristics
unique to reds and whites, consisting of

red: Currant (black or red), Berry (black, Mar-
ion, raspberry), Cherry, Chocolate, Tannic
(medium, firm, plenty of), and Vanilla

1Includes a Syrah, Petit Syrah, and varietal blend.
2Includes Washington or Oregon Cabernets and Merlots.
3Includes Fume Blanc, Gewurtztraminer, White Zinfandel

and a Sauvignon Blanc/Semillon Blend.
4Includes Muller Thurgau, Chenin Blanc, Gewurtz-

traminer, and Riesling.

white: Buttery, Creamy, Dry, Honey, Melon,
Citrus (includes lemon, grapefruit), Tree
Fruit (apple, peach, pear), and Tropical
Fruit

With sufficient variability in the data, it might
have been possible to evaluate origin and varietal
effects separately as well as joint effects for specific
combinations. However, most of the wines listed for
a particular varietal are from a region where that
varietal is recognized for good quality. For example,
all of the Zinfandels and all but one of the Caber-
net Sauvignon selections are from California. Thus,
though these could be treated separately, it would be
inaccurate to relate a parameter estimate for “Zin-
fandel” to Zinfandel effects across all origins. Thus,
the models presented treat varietals and origins as
pairs, though there are a number of wines that are
aggregated as more general “others”.

The sensory descriptors used in the analysis were
the most common ones on the wine menu. Other
descriptors applied only to a few wines and thus
were excluded from consideration. Non-alcoholic
and sparkling wines were excluded because it is
reasonable to suppose that the decision to drink
such wines excludes consideration of other (alco-
holic, non-sparkling) wines. For experienced wine
enthusiasts, the combination of vintage, varietal,
and origin provides information about the grape
quality for a specific wine. According to the restau-
rant’s wine steward, about five percent of the study
restaurant’s clientele might have some knowledge re-
garding a good or bad vintage. While model and
data limits precluded accurate testing of vintage im-
pacts, it does not seem that this would be very rel-
evant for this population of consumers.

3. Models

Ordinarily, count data such as this would be modeled
using log-linear Poisson regression, with the (log)
Poisson means dependent on characteristics associ-
ated with each wine. However, this data exhibits
over-dispersion, with, for example, more zero-counts
than a Poisson model allows for: of the 1425 ob-
servations, 1000 (70.2 percent) were zero (i.e. no
bottles of that wine sold that week), whereas a log-
linear Poisson regression model predicts only 67.8
percent zeros. To address this problem, we tried the
following models: negative binomial; zero-inflated
Poisson (ZIP) (Lambert, 1992); hurdle (Mullahy,
1986); zero-inflated negative binomial (ZINB). To
gauge the improvement in fit from accounting for
over-dispersion by using such models, we also fit a
standard log-linear Poisson regression model.



3.1 Negative Binomial Model

The standard Poisson regression model can be gen-
eralized so that each observation has its own mul-
tiplicative random effect in the Poisson mean, with
these random effects having a Gamma distribution
with mean one and variance 1/α. Whereas the stan-
dard Poisson model restricts the variance to equal
the mean, introducing random effects allows the
variance to exceed the mean by adjusting the Pois-
son means to reflect unexpectedly high or low de-
mand. The marginal distribution of the counts (inte-
grating out the random effects) is negative binomial
so that the count probabilities are

Pr(Qi = q) =
Γ(q + α)
q! Γ(α)

(
α

α + µi

)α (
µi

α + µi

)q

where Qi denotes the number of bottles of wine sold
in a week, and i = 1, . . . , n = 1425 (76 wines sold
over a 19-week period, but with one of the red wines
replacing another part way through the period).

3.2 ZIP Model

The traditional way in which a ZIP model allows for
over-dispersion is to assume that the counts follow
a mixture distribution: Poisson(µi) with probability
pi or identically zero (i.e. a “structural zero”) with
probability 1−pi, where µi is the Poisson mean. The
Poisson means are modeled as a function of the wine
characteristics, and the structural zero probabilities
can either be completely stochastic or can also be
modeled as a function of the wine characteristics.
We modify this set-up in light of the fact that one of
the wine characteristics almost guarantees non-zero
(positive) sales: Glass. There were nine wines avail-
able by the glass, and of the 171 weekly counts for
these wines, only nine were zeros. Such wines were
modeled as Poisson(µi). Other (non-glass) wines fol-
lowed the usual ZIP model.

Thus, the count probabilities are

Pr(Qi = 0) = exp(−µi) I(Glass=1)
+ (1− pi + pi exp(−µi)) I(Glass=0)

Pr(Qi = q) = (exp(−µi)µ
q
i /q!) I(Glass=1)

+ (pi exp(−µi)µ
q
i /q!) I(Glass=0),

q = 1, 2, . . .

3.3 Hurdle Model

The Hurdle model is similar to the ZIP model, ex-
cept that all the zero counts are structural and the
non-zero part of the model is zero-truncated Pois-
son. By contrast, the ZIP model allows some zeros
to arise from the Poisson part of the model. Again,

we make a modification for wines available by the
glass so that the count probabilities are

Pr(Qi = 0) = exp(−µi) I(Glass=1)
+ (1− pi) I(Glass=0)

Pr(Qi = q) = (exp(−µi)µ
q
i /q!) I(Glass=1)

+ (pi exp(−µi)µ
q
i /q!(1− exp(−µi)))

I(Glass=0), q = 1, 2, . . .

3.4 ZINB Model

The negative binomial model can be zero-inflated
similarly, so that the count probabilities are

Pr(Qi = 0) =
(

α

α + µi

)α

I(Glass=1)

+
(

1− pi + pi

(
α

α + µi

)α)
I(Glass=0)

Pr(Qi = q) =
(

Γ(q + α)
q! Γ(α)

(
α

α + µi

)α (
µi

α + µi

)q)

I(Glass=1)

+
(

pi
Γ(q + α)
q! Γ(α)

(
α

α + µi

)α (
µi

α + µi

)q)

I(Glass=0), q = 1, 2, . . .

3.5 Estimation

The link functions that relate µ = (µ1, . . . , µn) and
p = (p1, . . . , pn) to the wine characteristics can be
written

log(µ) = X1β

logit(p) = log(p/(1− p)) = X2η

where X1 and X2 are covariate matrices with
columns corresponding to wine characteristics. The
covariate matrices can contain covariates in com-
mon, and usually X2 contains a subset of the co-
variates in X1. For our application, X1 consists of
the 44 variables described above, while X2 consists
of a constant and Price. Incorporating further co-
variates in X2 made a negligible improvement in the
fit of the models.

We take a Bayesian approach, and hence need to
specify prior distributions for α, β, and η. With
small samples this choice can be critical, but with
larger samples (such as in this application) the
choice is less crucial, since information in the data
heavily outweighs information in the prior. Thus,
we give log(α), β, and η uninformative zero-mean
Normal priors with standard deviations of ten. In
other words, the only assumption made before do-
ing the analysis is that it is implausible that log(α),
β, and η are more than about plus/minus 20.



Table 1: Goodness of Fit Measures

Model Fit measures Predicted probability discrepancies

AIC BIC DIC Zero One Two + χ2

Poisson 2577 2808 2574 −2.4% 4.1% −1.7% 41.0
Negative binomial 2559 2796 2557 −2.0% 3.8% −1.8% 32.2
ZIP 2519 2761 2517 0.4% −0.7% 0.3% 21.9
Hurdle 2588 2830 2576 −0.1% 1.8% −1.7% 30.2
ZINB 2514 2767 2512 0.4% −0.5% 0.1% 16.6

We used WinBUGS (Spiegelhalter et al., 2003)
software to generate posterior samples for β and η.
Four chains of 18,000 iterations each for the various
models produced trace plots with a good degree of
mixing, and various MCMC convergence diagnostics
indicated convergence. In particular, after discard-
ing 9,000 burn-in samples and thinning to retain ev-
ery 9th sample to reduce autocorrelation (leaving a
total of 4,000 posterior samples), the 0.975 quantiles
of the corrected scale reduction factor (Brooks and
Gelman, 1998, p.438) for the β and η parameters
were each 1.3 or less.

4. Model Choice

Table 1 compares the models with respect to
Akaike’s Information Criterion (AIC, Akaike, 1973),
Bayesian (or Schwarz’s) Information Criterion (BIC,
Schwarz, 1978), and Deviance Information Criterion
(DIC, Spiegelhalter et al., 2002), as well as discrep-
ancies between predicted and observed probabilities
of zero, one, and two or greater counts, and Pearson
χ2 statistics (based on counts from zero to twenty).

The ZIP and ZINB models both appear to offer
substantial improvements in fit over the standard
Poisson model, improvements not matched by the
negative binomial and hurdle models. On all mea-
sures except for BIC, the ZINB model fits a little
better than the ZIP model, at the expense of an
added degree of complexity.

Pardoe (2001) and Pardoe and Cook (2002) de-
scribe “Bayes marginal model plots” (BMMP’s) for
checking regression model mean functions. These
ideas can be extended to check variance functions,
which can be very useful in situations such as this
where the competing models differ mainly on how
they handle the variance.

The basic idea is to first obtain “model-free resid-
uals” using a non-parametric smooth of a plot of Q
versus some measurable function of the predictors, h.
For this application, setting h equal to the log(fitted

means) provides a useful comparison of the models.
Calculate the residuals as the difference between Q
and the smoothed values, then square these residu-
als, plot them against h, and use another smooth to
produce a model-free variance function estimate.

Similarly, produce model-based variance function
estimates for each posterior sample using the iter-
ated expectation relation for conditional variances:

Var(y|h) = E(Var(y|x)|h) + Var(E(y|x)|h) (1)

In particular, estimate the first term on the right-
hand side of (1) by smoothing the (assumed) vari-
ance function from the fitted model against h. Es-
timate the second term on the right-hand side of
(1) by smoothing predicted counts from the fitted
model against h, calculating the squared differences
between these smoothed predicted counts and the
predicted counts themselves, and then smooth these
squared differences against h. Each model-based
variance function estimate is then the sum of these
two terms for each posterior sample.

Finally, plot the absolute values of the model-
free residuals versus h and superimpose square roots
of the model-free and model-based variance func-
tion estimates. 100 model-based estimates is usu-
ally enough to provide sufficient resolution in the
plot without excessive computing overhead. If the
model provides a reasonable estimate of the vari-
ance function, and if each of the smooths uses the
same smoothing parameter so that any estimation
bias should approximately cancel, then the model-
free smooth should broadly follow the same pattern
as the model-based smooths. Any indication that it
does not, for example by falling outside the band of
model-based smooths for particular ranges of h, sug-
gests that the model can perhaps be improved upon.
For this application, the Poisson model clearly fails
to track the higher variation in counts at larger val-
ues of h = log(fitted means), as can be seen in the
upper plot of Figure 1.
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Figure 1: BMMP’s for checking the variance func-
tions for all the wines with the Poisson model (up-
per) and for the white wines with the ZIP model
(lower).

BMMPs can be summarized numerically using
a Bayes Discrepancy Measure (BDM). First calcu-
late the average squared distance from the model-
free smooth to the model-based smooths (call this
a, say). Then calculate the average squared dis-
tances from each model-based smooth to all the
other model-based smooths (call these bm, m =

1, . . . , 100). Then the BDM is the proportion of bm’s
smaller than a; a BDM near zero indicates that the
model-free smooth passes close to the center of the
model-based smooths, while a BDM near one indi-
cates that the model-free smooth differs greatly from
the model-based smooths. Thus low values of BDM
indicate a good fit of the variance function, whereas
large values indicate a poor fit. For example, the
BDM for the upper plot in Figure 1 is 1.0, the largest
it can be.

To provide confidence in a particular model,
BMMP’s should have broadly matching smooths for
a variety of h-functions (similar to the requirement
for standard residual plots), as well as matching for
subsets of the data. We focus on the latter point
now, since this dataset naturally comprises two sub-
sets, for white and red wines. The lower plot of
Figure 1 shows a BMMP for white wines only with
the ZIP model. This shows a clear improvement on
the upper plot, and provides additional support for
the ZIP model (for white wines at least). The BDM
value for this plot is 0.49.

Similarly, the other numerical measures in Table 1
can be calculated separately for white and red wines.
A “parallel coordinate” plot provides a useful way
to display and compare the results for each of the
model choice techniques. Figure 2 displays the rela-
tive positions of each model on a common scale for
each of the model choice techniques by translating
each value to the range (0,1).

By taking into account all of the model choice
techniques together, it appears that while the ZIP
model shows the most promise for white wines, the
ZINB model is preferable for the red wines. In-
deed, if a hybrid model which has the ZIP struc-
ture for white wines and the ZINB structure for the
red wines is fit to this dataset, the resulting good-
ness of fit measures are AIC = 2507, BIC = 2755,
DIC = 2507, χ2 = 17.4, and BDM = 0.75. Taken
together with the results in Table 1, this suggests
that such a model may well be the most useful for
this dataset.

5. Discussion

Single model fit summaries can sometimes be mis-
leading. Indeed for the wine application presented
in this article, the residual deviance for the Poisson
model is 1369 on 1381 degrees of freedom; this would
ordinarily be suggestive of a reasonable fit. How-
ever, to thoroughly investigate whether alternative
models might provide a superior fit to a standard
model, multiple model choice diagnostics should be
used. We considered numerical techniques such as
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Figure 2: Parallel coordinate plots for goodness of
fit measures for white wines (upper) and red wines
(lower).

AIC, BIC, DIC, and Pearson’s χ2 statistic, as well as
graphical techniques such as Bayes marginal model
plots. Taken together, these demonstrated the rel-
atively poor fit of the Poisson model, particularly
when compared with zero-inflated Poisson (ZIP) and
zero-inflated negative binomial (ZINB) models.

Further, simple graphical displays of results can
inspire ideas for model improvement. For example,
by displaying model fit measures in parallel coordi-
nate plots, we were able to discern particularly well-
fitting models for white and red wines separately.

Practical considerations are also important in any
model choice exercise. For the wine application, the
ZIP and ZINB models offer comparable fits overall,
and in fact result in qualitatively similar conclusions
about the effects of the wine characteristic covari-
ates. Thus while the hybrid model suggested at the
end of Section 4 may offer an ideal solution from
a statistical perspective, the best practical solution
might be either of the ZIP or ZINB models.
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