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Abstract

Residual plots are traditionally used to assess the fit
of a regression model, yet can be difficult to interpret
when the response variable is binary. This difficulty be-
comes compounded when covariates have a hierarchical
or multilevel structure. An alternative graphical proce-
dure is proposed for visualizing goodness of fit in such
settings. The methodology is illustrated with an analysis
of individual-level and county-level effects on sentencing
practices across the U.S.

1 Introduction

Pardoe and Cook (2002) described a graphical technique
for assessing the fit of a logistic regression model, called
a “Bayes marginal model plot” (BMMP). This article de-
scribes an extension of the BMMP methodology to hi-
erarchical logistic regression. Section 2 describes the
dataset used to illustrate the methodology, while the hi-
erarchical model used is outlined in Section 3. Section 4
concerns assessment of the model using BMMPs, while
Section 5 contains a discussion.

2 Application: U.S. Imprisonment

In 2001, the U.S. imprisoned its citizens at a rate of
472 per 100,000 (Beck, Karberg, and Harrison, 2002),
six to twelve times higher than in other western coun-
tries. Furthermore, there is large variation in imprison-
ment levels within the U.S.; e.g., in 2001, Louisiana’s
rate per 100,000 residents was 795, while Maine’s was
126. Studies of differences in prison use among the states
have found various factors to play a key role, includ-
ing level of violent crime (Greenberg and West, 2001),
percent of the population that is African American (Mc-
Garrell, 1993), and geographic region—Southern states
appear to punish more severely (Michalowski and Pear-
son, 1990). Other studies examining aggregate punish-
ment variation using a county as the unit of analysis
have found unemployment in urban counties and violent

crime (McCarthy, 1990), and percent of the population
that is African American and Southern region (Weidner
and Frase, 2001) to be significantly related to prison use.

By contrast, most sentencing studies focus on indi-
viduals, whereby effects of case characteristics, crim-
inal history, and demographics are determined. How-
ever, effects of individual-level variables may vary ac-
cording to the cultural, political, economic, and social
contexts in which courts operate (Dixon, 1995). Stud-
ies of pooled statewide data have found several contex-
tual variables to have an effect on sentencing, e.g., level
of unemployment and crime rate (Myers and Talarico,
1987) and racial composition (Steffensmeier, Kramer,
and Streifel, 1993). However, these studies use conven-
tional logistic regression which does not correctly ac-
count for individual-level effects that vary according to
a jurisdiction’s cultural context and organizational con-
straints (Mears, 1998; Britt, 2000). To properly ac-
count for the multilevel nature of individual-level covari-
ates and county-level contextual covariates, hierarchical
modeling is more appropriate.

There has been only limited use of hierarchical mod-
eling in criminal justice research. Rountree, Land, and
Miethe (1994) used a hierarchical model for intra-city
neighborhood differences in victimization risk, while
Wooldredge, Griffin, and Pratt (2001) compared hierar-
chical and conventional models for the impact of prison
and inmate characteristics on misconduct. Britt (2000)
investigated whether social context and racial dispari-
ties affected punishment decisions in Pennsylvania coun-
ties for 1991-1994. Controlling for urbanization, racial
threat, economic threat, and crime control, punishment
severity varied by race across jurisdictions, but measures
of social context explained little of this variation.

Pardoe, Weidner, and Frase (2002) analyzed data from
the Bureau of Justice Statistics’ State Court Processing
Statistics program, a biennial collection of data on felony
defendants in state courts in 39 of the 75 most popu-
lous U.S. counties. Information collected includes demo-
graphic characteristics, criminal history, and details of
pretrial processing, disposition, and sentencing of felony
defendants. Pardoe et al. linked individual-level data for
8,446 felony convictions in 17 states during May 1998
to county-level variables using the Federal Information
Processing Standards code, and fit the hierarchical logis-
tic regression model described in Section 3. Given the



lack of consensus regarding determinants of variation in
prison use, and the limited use of hierarchical models in
this area, it is vitally important to assess the fit of this
model before it is to be used to inform policy.

Individual-level variables: Y = 1 if offender received
a prison sentence, 0 for a jail or non-custodial sentence;
IAGE = offender’s age in years;IMAL = 1 for men, 0 for
women; IBLK = 1 for African American, 0 otherwise;
type of offense is measured with five dummy variables
based on the most serious conviction charge:ICVS =
murder, rape or robbery, i.e. a “more severe” violent of-
fense,ICVM = assault or other violent crime, i.e. a “less
severe” violent offense,ICTR = drug trafficking,ICDR =
drug possession,ICPR= burglary or theft, i.e. a property
offense (the reference charge category includes weapons,
driving-related, and other public order offenses);ICJS=
1 if offender’s criminal justice status was active at the
time of the offense, 0 otherwise;IPFE= 1 if offender had
one or more prior felony convictions, 0 otherwise;IPMI

indicates prior misdemeanors similarly;IDET = 1 if of-
fender was detained after being charged, 0 if released;
IREV = 1 if offender’s pretrial release was revoked, 0
otherwise;IBAD = 1 if offender was arrested while on
pretrial release but release was not revoked;ITRI = 1 if
offender was convicted by trial, 0 if convicted by plea.

County-level variables: CARR = county’s arrest rate
per 10,000 residents in 1998, a proxy measure for a
county’s level of crime;CUNR = county’s unemployment
rate for 1998.CBLP = a census estimate of the percent-
age of the county’s population that was African Amer-
ican in 1998. CSTH = 1 if the county is located in a
Southern state, 0 otherwise.

After excluding data with missing information, 3,672
individuals from 32 counties in 15 states remained. Par-
doe et al. (2002) conducted a full analysis incorporating
imputation of missing data; only complete data are used
for the analyses considered in this article.

3 Hierarchical Logistic Regression

A hierarchical logistic regression model, also referred to
in the literature as a multilevel model, can account for
lack of independence across levels of nested data (i.e., in-
dividuals nested within counties). Conventional regres-
sion assumes that all experimental units (in this case, in-
dividuals) are independent in the sense that any variables
affecting prison sentencing prevalence have the same ef-
fect in all counties. Hierarchical modeling relaxes this
assumption and allows these variables’ effects to vary
across counties. One way to do this uses a generalization
of the model of Wong and Mason (1985). First, the usual
logistic regression model is fit tonj individuals within
each ofJ = 32 counties. The number of individuals in

each county ranged from 14 to 456, with total number of
individualsI =

∑32
j=1 nj = 3,672. For theith individual

in thejth county, observe a dichotomous response,

Yij =

{
1 for a prison sentence

0 for a jail or non-custodial sentence

Yij |pij ∼ Bernouilli(pij), wherepij = Pr(Yij = 1),
and

logit(pij) = log
(

pij

1− pij

)
= XT

i βj (1)

where Xi represents measurements onK individual-
level variables andβj consists ofK regression coeffi-
cients (specific to thejth county). Next, since eachβ-
coefficient is likely to be related across counties, assume
that each one can be explained by up toL county-level
variables,

βj = Gjη + αj (2)

whereGj is aK×M block-diagonal matrix of measure-
ments onL county-level variables,η consists ofM re-
gression coefficients, andαj is aK×1 vector of county-
level errors. In particular, thekth row of Gj contains
a non-zero block with a one for an intercept together
with the county-level variables used to explain thekth
β-coefficient. Thus,M is K ×L if all county-level vari-
ables are used to explain eachβ-coefficient, or less than
this otherwise. Combining (1) and (2) leads to

logit(pij) = XT
i Gjη + XT

i αj (3)

Conventionally, theη-parameters in (3) are fixed effects
(they have no j-subscript and represent the same effect
over all counties) while theα-parameters are random ef-
fects (they have a j-subscript and represent different ef-
fects across counties). The presence of both types of ef-
fects makes (3) a mixed model. Suppressing the county-
level errors so that (3) becomes a fixed effects model and
amenable to standard regression requires assuming that
individual-level effects are the same across counties, an
assumption unlikely to be satisfied in practice.

Mixed models can be fit using specialized software
such as “MLwiN” (Rasbash et al., 2000) and “HLM”
(Raudenbush, Bryk, Cheong, and Congdon, 2001). Al-
ternatively, by putting the model into a Bayesian frame-
work, the distinction between fixed and random effects
disappears (since all effects are now considered ran-
dom), and the hierarchical structure is explicitly ac-
counted for in the analysis. Pardoe et al. (2002) followed
this Bayesian route, givingη a flat (uninformative) prior
while specifying an exchangeable prior for the county-
level errors,αj ∼ N(0,Γ−1), where0 is aK-vector of
zeros andΓ−1 is aK ×K covariance matrix. A hyper-
prior distribution was specified for the inverse covariance
matrix,Γ ∼ Wishart(R,K), whereR can be considered



a prior estimate ofΓ−1 based onK observations, and, to
represent vague prior knowledge, degrees of freedom for
the Wishart distribution was set as small as possible to be
K (the rank ofΓ). R was set to have values ten along
the diagonal and zero elsewhere (sensitivity analysis, dis-
cussed by Pardoe et al., confirmed that the choice ofR
has little effect on the results).

The software packageWinBUGS (Spiegelhalter,
Thomas, and Best, 1999) was used to generate poste-
rior samples forη and αj ; this free software enables
Bayesian analysis of complex statistical models using
Gibbs sampling, a Markov chain Monte Carlo (MCMC)
technique. The first model considered includedK ×L =
16× 5 = 80η-coefficients.WinBUGS ran four chains
for 5,000 iterations, discarding the first 2,000 samples
from each to leave 12,000 posterior samples forη. Sum-
mary statistics for these samples indicated that manyη-
coefficients were estimated with considerable impreci-
sion. In particular, 11η-coefficients corresponding to in-
teractions of individual-level and county-level variables
had posterior standard deviations at least five times the
absolute value of their posterior means; these interac-
tions were excluded from subsequent models.

The number of model terms continued to be reduced in
this way, with interactions that demonstrated little abil-
ity to explain individual-level coefficients within coun-
ties removed. To preserve hierarchy and aid interpreta-
tion, no main effects (individual-level and county-level
variables by themselves) were removed. As the model
was simplified, the number of posterior samples was in-
creased to improve estimation of means and standard
deviations. Nine iterations of this procedure (each tak-
ing about 24 hours of computing time) produced a final
model of just 38 terms, with all interactions having poste-
rior standard deviations no more than the absolute value
of their posterior means. After running four chains for
14,500 iterations, trace plots showed a good degree of
mixing and MCMC convergence diagnostics indicated
convergence. The model appeared to provide a good
compromise between, on the one hand, parsimoniously
describing the dependence of sentence type on individ-
ual and county covariates and, on the other hand, inad-
vertently excluding potentially important terms.

Before interpreting and using posterior samples from
this model, underlying assumptions need to be assessed.
Posterior samples of county-level errors,αj , are a form
of residual, and so lend themselves to the usual kinds
of model diagnostics. The fact that they averaged close
to zero across counties is reassuring, but unsurprising.
More open to doubt are the normality and exchange-
ability assumptions. However, normal probability plots
revealed no strong abnormalities, and plotting posterior
means of theαj against county-level covariates also re-
vealed no worrisome patterns (plots not shown). Never-

theless, such diagnostics seem insufficient to assess the
fit of a model of such complexity. Section 4 describes
use of an alternative graphical diagnostic procedure.

4 Bayes Marginal Model Plots

Cook and Weisberg (1997) proposed the use of “marginal
model plots” (MMPs) to assess the goodness of fit of a
regression model. Extending their rationale to hierar-
chical regression with covariatesX measured on units
nested in clusters with covariatesG leads to:

EF(Y |X, G) = EbM(Y |X, G),

{
∀X ∈ X ⊂ IRK

∀G ∈ G ⊂ IRL

(4)

⇐⇒ EF(Y |h) = EbM(Y |h),

∀ h = h(X, G) : IRK+L → IR1 (5)

whereEF denotesmodel-freeexpectation,EbM denotes
model-basedexpectation,X andG are the sample spaces
of X andG respectively, andh is any measurable func-
tion of X andG. In practice, usefulh-functions include
fitted values, individual covariates in the model, poten-
tial covariates not in the model, linear combinations of
covariates, and random linear projections of covariates.
Conditional expectations ofY in the logistic regression
context correspond to the probabilitiespij in (1).

Ideally, model assessment requires equality (4) to be
checked, but whenK + L > 2 thenE(Y |X,G) is dif-
ficult to visualize. However, ifh is univariate,E(Y |h)
can be visualized in a two-dimensional scatterplot, and
equality (5) can be checked. So, to assess the relation-
ship betweenEF(Y |X, G) and EbM(Y |X, G), instead
compareEF(Y |h) andEbM(Y |h) for varioush. EF(Y |h)
and EbM(Y |h) can be estimated with non-parametric
smooths, e.g. cubic smoothing splines, the former by
smoothingY versush, the latter by smoothing fitted val-
ues (probabilities),EbM(Y |X, G), versush. Superim-

poseÊF(Y |h) andÊbM(Y |h) on a plot ofY versush to
obtain a MMP for the mean in the (marginal) direction
h. Using the same method and smoothing parameter for
both smooths allows their point-wise comparison, since
any estimation bias approximately cancels. Smooths that
match closely for any functionh provide support for the
model; otherwise model inadequacy is indicated.

However, it can be difficult to judge whether smooths
match closely without guidance on model uncertainty.
Bayesian model assessment ideas from Gelman, Meng,
and Stern (1996) provide one way to visualize this un-
certainty. Consider drawing values ofβj in (1) from their
posterior distributions, and generating a sample ofI real-
izations ofY from the model indexed by theseβj . Repeat
this process a large numberm of times and compare the
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Figure 1: Bayes marginal model plot (BMMP) for the final hierarchical
model withh = XT

i Gj �̂+XT
i �̂j . The data have been jittered to aid

visualization of relative density and the smooths are smoothing splines
with six effective degrees of freedom.

dataY-values to them (posterior predictive) realizations
from the model. Then, if the data “look like” a typical
realization from the model there is no reason to doubt its
fit. On the other hand, if the data appear to be very “un-
usual” with respect to them model realizations, then the
model is called into question. A graphical way to do this
is to compare model-free smooths of dataY-values with
model-based smooths of predicted probabilities (calcu-
lated using sampledβj values). So, in a Bayes marginal
model plot (BMMP), instead of superimposing just one
model-based smooth, smooths form model samples are
superimposed;m = 100 provides good resolution in the
plot without excessive computing overhead.

Figure 1 is a BMMP for the final hierarchical model
for the imprisonment data withh = XT

i Gj η̂ + XT
i α̂j ,

whereη̂ andα̂j are posterior means. If, for a particularh,
the blue model-free smooth liessubstantially outsidethe
band of red model-based smoothsor it does not follow
the general pattern of the red model-based smooths, then
the model is called into question. If, no matter what the
functionh is, the blue model-free smooth liesbroadly in-
sidethe red model-based bandand it follows the general
pattern of the red model-based smooths, then perhaps the
model is a useful one. In Figure 1, the blue smooth of the
data passes close to the center of the red band of model-
based smooths of1/(1 + exp(−XT

i Gjη
∗ − XT

i α∗j )),
whereη∗ andα∗j are 100 posterior samples. So, there is
little indication of lack-of-fit from this plot.

Since fitting a hierarchical logistic model requires sub-
stantially more computing time than a conventional (non-
hierarchical) model, it is instructive to compare BMMPs
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Figure 2: BMMPs for county 10;h = XT
i Gj �̂ + XT

i �̂j for hier-
archical model (upper) andh = XT

i Gj �̂ for non-hierarchical model
(lower). The smoothing splines have four effective degrees of freedom.

for a non-hierarchical model containing the same terms
(main effects and interactions) as the final hierarchical
model. A BMMP for such a non-hierarchical model with
h = XT

i Gjη̂ (plot not shown), is qualitatively very sim-
ilar to Figure 1. This is unsurprising since both models
give similar predictions when averaging across counties.

However, equality (5) should also match for subsets
of the data, in particular within counties. Figure 2 con-
tains BMMPs for one of the counties (number 10); the
upper plot withh = XT

i Gj η̂ + XT
i α̂j is for the hierar-

chical model, the lower plot withh = XT
i Gj η̂ is for the

non-hierarchical model. Now the non-hierarchical model
clearly appears to be inadequate, while the hierarchical
model continues to display no lack-of-fit. A similar as-
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Figure 3: BMMPs withh = CARR for hierarchical model (upper)
and non-hierarchical model (lower). The smoothing splines have four
effective degrees of freedom.

sessment can be made for comparable BMMPs for the
other counties (plots not shown).

Nevertheless, a series of BMMPs for varioush-
functions should be constructed to gain confidence in any
particular model. Since the models differ greatly on how
county-level covariates are treated, consider the BMMPs
with h = CARR in Figure 3. Again the non-hierarchical
model appears inadequate, while the hierarchical model
shows promise. Differences are also apparent for the
other county-level covariates (plots not shown).

Finally, consider a BMMP from the perspective of a
county as the unit of analysis. The dataY-values now
become proportions of individuals in the counties sen-
tenced to prison. The model-based probabilities of re-
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Figure 4: County-level BMMPs withh = CBLP for hierarchical model
(upper) and non-hierarchical (lower). The smoothing splines have four
effective degrees of freedom.

ceiving a prison sentence in each county can be ob-
tained by averaging individual probabilities. County-
level BMMPs can then be constructed withh now a func-
tion of county-level covariates,G, only. BMMPs based
on this premise withh = CBLP are shown in Figure 4.
Again the hierarchical model seems better than the non-
hierarchical one. Differences are also apparent for the
other county-level covariates (plots not shown).

In conclusion, the hierarchical model appears to fit
well, and certainly improves on the conventional model.
Pardoe et al. (2002) discuss results from the hierarchical
model fit to the full imprisonment dataset.



5 Discussion

This article has demonstrated how Bayes marginal model
plots (BMMPs) can be extended to assessment of hierar-
chical models containing random effects. Plots can be
constructed at different levels of the hierarchy, e.g. with
two levels: at the individual level and the cluster level.
The example on U.S. imprisonment illustrates the need
to use hierarchical models with multilevel covariates.

The methodology is not limited to logistic regression,
and is generally applicable to any regression model. Ref-
erences to normal linear and additive model applications
can be found in Pardoe and Cook (2002), which also con-
tains further discussion of technical aspects of BMMPs
such as calibration and smoothing.S-PLUS andR func-
tions that can be used in conjunction withBUGS and
BOA to construct BMMPs are available at:
http://lcb1.uoregon.edu/ipardoe/research/bmmpsoft.htm
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